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Abstract 
 The complexity and variety of Distributed Denial of Service (DDOS) attacks make it very 
difficult to detect them in data collected from network traffic. Although machine learning 
algorithms have shown some success in this area, data that contains traits that are either strongly 
linked or irrelevant might limit their efficacy. This study presents a new method for regularised 
feature selection that uses the LASSO-RFE methodology to improve the accuracy of DDOS attack 
detection, which will help to alleviate this problem. LASSO-RFE is a two-stage process that 
combines the best features of LASSO regularisation with RFE. At first, the high-dimensional 
feature space is subjected to LASSO regularisation in order to determine which characteristics are 
most important for DDOS attack detection. As the regression coefficients of superfluous or 
unimportant characteristics approach zero, LASSO removes them from the model. The remaining 
features chosen by LASSO are then subjected to RFE in order to improve the model's performance 
and narrow the feature set even more. Until the ideal subset of features is found, RFE repeatedly 
removes the characteristics that aren't important based on their model weights. Improving the 
DDOS attack detection models' resilience and interpretability, the suggested technique provides a 
systematic and efficient way for feature selection. When compared to more conventional machine 
learning methods, experimental findings show that LASSO-RFE significantly improves the 
accuracy of DDOS attack detection. In order to improve the efficiency and accuracy of DDOS 
attack detection in network traffic data, LASSO-RFE reduces the dimensionality of the feature 
space and efficiently filters out unnecessary characteristics. 
Keywords: Distributed Denial of Service, Machine Learning, Network Traffic Data, Recursive 
Variable Elimination 
 
I. Introduction  
 Maintaining the availability and integrity of online services is crucial in light of the 
increasing frequency of Distributed Denial of Service (DDOS) attacks, which pose major risks to 
network infrastructures [1]. The widespread and organised nature of DDOS attacks makes them a 
formidable threat, since they can flood target systems with malicious traffic, disrupting services 
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and even compromising security [2]. Because these threats are constantly changing, traditional 
signature-based detection approaches aren't always enough to stop them. Therefore, methods based 
on machine learning are becoming more important for DDOS attack detection, since these methods 
take use of algorithms' capacity to adapt to evolving attack patterns [3-4]. Nevertheless, the 
efficacy of DDOS attack detection systems trained using machine learning techniques relies on the 
features' quality and relevance [5-6]. The detection procedure is sometimes made more difficult 
by the abundance of characteristics found in network traffic data, some of which can be 
superfluous, redundant, or strongly linked. Reduced interpretability, higher computing cost, and 
inferior detection performance might result from inaccurate feature selection [7-8]. 
 Based on the Least Absolute Shrinkage and Selection with Recursive Variable Elimination 
(LASSO-RFE) method, this study suggests a regularised feature selection strategy to overcome 
these obstacles [9–10]. By methodically selecting and prioritising the most important 
characteristics while rejecting irrelevant ones, this methodology seeks to improve the accuracy and 
efficiency of DDOS attack detection. Two steps comprise LASSO-RFE: first, selecting the most 
discriminative features from the high-dimensional feature space using LASSO regularisation; and 
second, further refining the collection of features using Recursive Variable Elimination (RFE) [11, 
12]. The suggested method improves the detection model's discriminative capacity and makes use 
of the complimentary capabilities of LASSO and RFE to successfully reduce the impact of 
dimensionality. Here, we lay out all the necessary details for the suggested LASSO-RFE method 
of regularised feature selection for DDOS attack detection [13–16]. Compared to more 
conventional feature selection approaches, our approach has several benefits, which we outline in 
detail [17]. Furthermore, we provide experimental findings that prove LASSO-RFE is effective in 
detecting DDOS attacks more accurately and efficiently than baseline methods. All things 
considered, this study aids in the creation of better detection methods to lessen the blow that 
distributed denial of service (DDOS) attacks deal to network infrastructures [18-21]. 
1.1 Motivation of the paper 
 Given the ever-changing and complex nature of Distributed Denial of Service (DDOS) 
attacks, this article is motivated by the urgent need to properly identify these cyber threats in data 
collected from network traffic. While there are several interesting ways to tackle this problem 
using machine learning techniques, their effectiveness can be hindered if the data contains traits 
that are either strongly linked or irrelevant. Because of this, there is an urgent need for a method 
that can isolate and rank the most important characteristics for reliable DDOS attack identification. 
This study presents a new approach to feature selection that combines the best features of Least 
Absolute Shrinkage and Selection with Recursive Variable Elimination (LASSO-RFE) to address 
this urgent need. The suggested method integrates both approaches with the goal of improving 
DDOS attack detection models' accuracy and efficiency via the systematic identification and 
retention of the most discriminative characteristics and the rejection of redundant ones. 
II. Background study 
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 Damtew, et al. [3] The advantages of combining features, which are the outcomes of 
several feature selection techniques, into a more predictable ensemble features subset, have been 
shown in this study. Using the collected ensemble features subset can improve NIDS prediction 
performance. There is evidence that a merit-based evaluation of the ensemble features subset can 
help eliminate superfluous traits and zero in on the most important ones for intrusion detection. 
 Ibrahim Hairab, et al. [5] This paper evaluated regularised convolutional neural network 
(CNN) classifiers for zero-day attack detection using the TON-IoT dataset. In the evaluation, one 
classic ML-based classifier and one standard convolutional neural network (CNN) classifier were 
used. By using the conventional CNN classifier, we can gauge the advantages of using DL-based 
techniques without regularisation in comparison to traditional ML methods. We next evaluate 
CNN classifiers after they've used L1 and L2 regularisation methods. 
 Jose, et al. [7] Improving the security and dependability of interconnected systems is of 
paramount importance, especially with the proliferation of Internet of Things (IoT) devices. 
Intrusion detection research within the framework of the Internet of Things has shown that 
traditional rule-based systems are unable to handle the dynamic and diverse nature of threats. The 
increased usage of ML methods to enhance detection abilities can be attributed to this. Through 
its examination of tailored feature extraction techniques and the use of diverse ML algorithms, the 
study sheds light on the practicality of accurate and efficient intrusion detection in IoT 
environments. The effectiveness of ensemble techniques demonstrates that it is conceivable to 
combine algorithmic capabilities for enhanced resilience. 
 Krishnan, V.G., et al. [9] The purpose of this research is to examine deep learning 
techniques for DDoS detection with an eye towards intelligent DDoS detection agents. We can 
reduce calculation and transmission costs, increase detection rates (up to 98%) and decrease false 
alarm rates (down to 12%) using the suggested solution's usage of an efficient adaptive feature 
selection approach (auto-encoder). The deep learning bots' programming allows them to monitor 
network traffic and detect malicious activity via packet analysis. Since it is preferable to avoid 
problems altogether, the proposed strategy places an emphasis on preventive defence. The research 
covers every possible attack, method, and defence. 
 Ma, et al. [11] The four steps of our methodology, FAMS, which stands for "feature and 
model selection," are detailed here. Every one of these steps—preparing the data, selecting features 
(FS), selecting a model (MS), and optimising RF—is crucial to the process. Part of processing data 
involves extracting features, coding features, filling missing values, eliminating outliers, and 
performing normalisation methods. Data pre-processing is the first step. Following that, we 
provide a feature selection technique that makes use of embedding, filter, and wrapper 
simultaneously. By combining 21 characteristics, this method would make DDoS attacks more 
effective and eliminate the shortcomings of existing approaches. 
 Nkongolo, M. and Tokmak, M., [13] Our new detection and classification system is a direct 
reaction to the threat of ransomware, which is a big issue in today's digital environment. Our 
method's use of SAE for feature selection and LSTM classifier leads to improved ransomware 
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classification accuracy. By following this procedure—which involves preprocessing the 
UGRansome dataset, unsupervised SAE feature selection, and supervised fine-tuning—we can 
develop a robust model that succeeds across many ransomware families. Architectural 
optimisations led to an impressive 99% accuracy, surpassing that of standard classifiers. 
  
 Sayegh HR et al. [17] and lastly, this research presents a sophisticated Intrusion Detection 
System (IDS) developed for IoT networks using LSTM. By using cutting-edge deep learning 
techniques, our approach greatly enhances IoT security by accurately detecting network intrusions. 
An effective intrusion detection system (IDS) relies on meticulous data preparation procedures. 
The system achieves good accuracy in distinguishing between genuine and malicious network 
events by using the Synthetic Minority Over-Sampling Method (SMOTE) to handle data 
imbalance and Recursive Feature Elimination (RFE) to optimise feature selection. 
2.1 Problem definition 
 The paper addresses the challenge of detecting Distributed Denial of Service (DDOS) 
attacks in network traffic data, which is complicated by the intricate nature and diverse forms of 
such attacks. While machine learning algorithms hold promise in this area, their effectiveness is 
impeded by the presence of irrelevant or highly correlated features in the data. Therefore, the paper 
proposes a novel approach for regularized feature selection, utilizing the Least Absolute Shrinkage 
and Selection with Recursive Variable Elimination (LASSO-RFE) technique to enhance the 
accuracy of DDOS attack detection. 
III. Materials And Methods  
 In this section, we outline the materials used in our study and describe the methodology 
employed to investigate the effectiveness of the proposed Regularized Feature Selection for 
Improved DDOS Attack Detection using a Recursive Variable Elimination Approach with Least 
Absolute Shrinkage and Selection (LASSO-RFE). We detail the dataset utilized for 
experimentation, the preprocessing steps, and the implementation of the LASSO-RFE algorithm 
for feature selection. Additionally, we provide an overview of the evaluation metrics used to assess 
the performance of the detection model. 
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Figure 1: Overall architecture  

 
3.1 Dataset collection 
 https://www.kaggle.com/datasets/bassamkasasbeh1/wsnds, The WS-NDS dataset, 
available on Kaggle, is a collection of network traffic data for intrusion detection system (IDS) 
evaluation. The dataset contains a total of 56,422 network traffic instances, which are labeled as 
either normal or attack traffic. The attack traffic includes several types of attacks such as denial of 
service (DoS), probing, user-to-root (U2R), and remote-to-local (R2L). 
3.2 Statistical Normalization using z-score normalization and min-max scaling 
3.2.1 Z-score normalization 
 Z-score normalization, also known as standardization, is a common statistical procedure 
for cleaning and organizing data. From the above information, a normal distribution is derived, 
with mean 0 and standard deviation 1. This technique is very helpful for standardizing a dataset 
containing characteristics that utilize a variety of units and scales. To calculate a z-score, we first 
remove the dataset's mean from each data point and then divide that number by its standard 
deviation. The mathematical formula for determining the z-score (Z) for a set of features XX is as 
follows: 

𝑍 =
(௑ିఓ)

ఙ
 ------ (1) 

 X is the feature's starting point value. 

 𝜇 represents an average of all feature values. 

 𝜎 represents the dispersion of feature values as a whole. 
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 In the preprocessing phase, normalization decomposes data with numerical properties so 
that the values in the data can be transformed into a specified range. Min-max normalization, z-
score normalization, and decimal scaling are the most prevalent approaches to normalizing data. 
Z-score normalization, as shown by Equation 1, assigns an attribute E value to a new range. 

𝑣 , =
௩೔ିா೔

௦௧ௗ(ா)
 ------- (2) 

Description:  
𝑣 , = value obtained after normalization.  
𝑣௜ = the property value that has to be normalized  
𝐸௜ = mean attribute value  
𝑠𝑡𝑑(𝐸) = the E-attribute of the standard deviation. 
3.2.2. Min-max scaling 
 To normalize characteristics to a specified range, often [0, 1], min-max scaling is a 
preprocessing method used in data analysis. When working with data that fluctuates greatly in size, 
it shines. This technique uses a linear transformation to scale the data such that the feature's lowest 
and maximum values are represented by 0 and 1, respectively. For a given feature XX, the min-
max scaling formula is: 

𝑋௦௖௔௟௘ௗ =
௑ି௫೘೔೙

௫೘ೌೣି௫೘೔೙
 ------ (3) 

Where: 
 𝑋 is the original worth of the component. 
 𝑥௠௜௡ is the lowest value of this attribute that appears in the data set. 
 𝑥௠௔௫ is the highest possible value of the characteristic found in the data set. 

3.3 Feature Selection Using LASSO-RFE 
 Feature selection using Least Absolute Shrinkage and Selection with Recursive Variable 
Elimination (LASSO-RFE) involves two stages: initially, LASSO regularization is applied to the 
high-dimensional feature space, selecting the most relevant features by shrinking regression 
coefficients towards zero; subsequently, Recursive Variable Elimination (RFE) further refines the 
feature set by iteratively eliminating the least important features based on their weights in the 
model until the optimal subset is selected. By combining the benefits of LASSO regularization and 
RFE, LASSO-RFE efficiently identifies discriminative features for DDOS attack detection, 
improving model accuracy and interpretability while reducing computational complexity. 
3.3.1 LASSO 
 The LASSO operator, referred by Fernandez et al.  in 2024, is a least-squares-like problem 
that incorporates a 𝑙ଵ penalty into the parameter vector. 

min
ଵ

ଶ
‖𝑍 − 𝛷𝜃‖ଶ

ଶ + 𝜆‖𝜃‖ଵ --------- (4) 

 Where k•k1 stands for the 𝑙ଵ-norm, while k•k2 represents the 𝑙ଶ-norm. 
The trade-off between approximation error and sparseness is controlled by the regularization 
parameter 𝑅 3 𝜆 =  [𝜆_𝑚𝑖𝑛 , . . . , 𝜆_𝑚𝑎𝑥]. The least-squares estimator (Eqn.5) is reduced to zero 
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by the LASSO and, for any j, it can be set to zero. As a result, LASSO functions as a tool for 
selecting structures. 
 According to Chen et al. (2001), a quadratic programming framework can be used to create 
a solution to LASSO. The optimization issue can be expressed as a simple binding restricted 
quadratic programmed (QP) with the use of slack variables, 

min
௫

ଵ

ଶ
𝑥்𝑀𝑥 + 𝑐்𝑥   Such that 𝑥௞ ≥ 0,and where, 

𝑀 = ቂ 𝛷்𝛷 −𝛷்𝛷
−𝛷்𝛷 𝛷்𝛷

ቃ , 𝑐 = 𝜆1 − ቂ
𝛷𝑍

−𝛷்𝑍
ቃ , 𝑥 = ቂ𝜃ା

𝜃ିቃ. ---------- (5) 

 The formula for the model parameters is 𝜃 =  𝜃ା  ∔ 𝜃ି. According to Mészáros (1998), 
regular optimizers have no trouble solving the QP. We can therefore solve the general structure 
computation issue given an appropriate regularization value. We now examine a technique that 
allows for the selection of a suitable regularization parameter. 
 In order to use LASSO, one must get the penalty term's regularization parameter, λ, using 
equation 6. The cross-validation approach is used to derive λ. The estimation of the prediction 
error is made possible by this method. Selected in order to minimize this estimate is the 
regularization parameter, λ. 
𝑃𝐸 = 𝐸[𝑍 − 𝛷𝜃]ଶ  ------------- (6) 
 Assuming the excitation signal is constantly stimulating and ΦTΦ is positive definite is a 
common assumption for identification. Therefore, Eqn. 6's first term is a function that is strictly 
convex. A unique optimizer is assured since the total is absolutely convex and the second term is 
convex. Now, let's pretend that we already know the ideal regularization parameter, Σ ∏. The 
solution will converge to a unique global minimum since Eqn.6 is a strictly convex optimization 
problem. According to Grigaliadis and Ritter (1969), parametric optimization theory reveals that 
𝑃𝐸(𝜆) is a piecewise quadratic function and not necessarily a convex function. Therefore, multiple 
model structures can be obtained for the same PE for various values of λ. In the next section, we 
examine LASSO's ability to choose the right model structure for a nonlinear model simulation. 
 The last thing to do is estimate each model parameter separately. The linearity of the 
parameters in a NARMAX model allows for the use of conventional least-squares minimization 
methods: 

𝑚𝑖𝑛
ଵ

ଶ
‖𝑍 − 𝛷𝜃‖ଶ

ଶ ------------ (7) 

 𝛷 is a matrix of repressors, θ is a vector of unknown system coefficients, and Z is a vector 
of outputs in the set 𝑅ே × 1. This is a pseudo linear regression issue since 𝛷 is (mostly) unknown 
and has to be estimated along with the parameters, and the regression matrix is a function of the 
observed input-outputs and unmeasured noise. A series of prediction errors is used to estimate the 
noise, denoted as R^N×1 3    = Z−Zˆ, where Zˆ = Ŧ𝓆 is the expected output and 𝓆 is the estimated 

parameter vector. When there are a lot of candidate terms, it's hard to estimate the parameter 
variance using least-squares, as said before. Therefore, we are currently taking a look at a new 
method that might make structure selection of very over-parameterized models possible. 
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Monte-Carlo simulations of a polynomial nonlinear system were used to evaluate LASSO's 
structural detection performance. A uniformly distributed white input was used in these 
simulations. Each of the 1,000 Monte-Carlo simulations had its own distinct input-output 
realization plus an additional sequence of white, zero-mean noise that was dispersed according to 
the Gaussian distribution. From a signal-to-noise ratio (SNR) of 20 to 0, the output additive noise 
amplitude was raised in 5 dB increments. There were a thousand data points in each input-output 
set. A set of 1,000 logarithmically spaced λ values (10λmin ≤ λ < 10λmax) was used to numerically 
minimize the cross-validation error, which was then used to estimate the regularization parameter, 
λ. The values of 𝜆௠௜௡ =  −10 𝑎𝑛𝑑 𝜆௠௔௫  =  1.5 were chosen for the min-max regularization 
parameters. Each data set's final one-third was used for cross-validation; 667 points were employed 
for estimate and 333 for validation. P. 
 
3.3.2 RFE 
 The outcome will be a lack of generalizability and poor classification accuracy. The truth 
is that not every trait, characteristic, or gene contributes positively to the forecast. An efficient and 
successful method for lowering the model complexity by the removal of superfluous predictors is 
recursive feature elimination or RFE for short. Since RFE is formally a wrapper approach that 
fundamentally uses filter feature selection, it can be easily included into many machine learning 
algorithms as their primary feature selection method. Then, depending on how important the 
features are, it ranks them by coefficient or feature importance. One by one, it discards the weakest 
feature(s) and re-fits the model. The procedure is iterated until a predetermined feature count is 
achieved. 

𝑅𝑎𝑛𝑘௜ = ൛𝑟௜ଵ = 1, 𝑟௜ଶ = 2, … , 𝑟௜௣ = 𝑝ൟ -------- (8) 

 Afterwards, we ascertain the feature cut-off positions using eight different ML-RFE 
algorithms. In the opinion of most people, these are the most crucial traits. So, to build each 
individual optimum feature subset, |𝛼𝑃| features from each feature subset are chosen in this 
methodology. 

𝐹𝑆௜
௢௣௧

= {𝑓௜ଵ, 𝑓௜ଶ, … , 𝑓௜ , |𝛼𝑃|} ----------- (9) 

Where the round-down operator is represented in mathematics by |𝛼𝑃| 
 By doing so, we can eliminate features that aren't accurate and robust. To be more precise, 
imagine that the parameter τ is greater than the AUC of the N best feature sets for predictive 
classification. Because of this, they are identified as 

𝑓𝑖௢௣௧ = ൛𝐹𝑆ଵ
௢௣௧

, 𝐹𝑆ଶ
௢௣௧

, … , 𝐹𝑆ே
௢௣௧

ൟ ------------- (10) 

 Similarly, we define the robust biomarker screening issue as an N-feature subset stable 

combination problem. All potential permutations of the sets in 𝐹𝑆ଶ
௢௣௧ are evaluated for stability.  

3.3.3 LASSO with RFE 
 A ranked feature list is what LASSO-RFE produces. Selecting a set of highly valued 
characteristics is the first step in feature selection. Similarities between the LASSO model and the 
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LASSO-RFE ranking criteria are strong. LASSO great generalizability and excellent accuracy 
make it a popular approach for classification. A number of e-nose applications have found success 
with it. So, it's safe to assume that ranking criteria based on its model will work well. Finding a 
separating hyper plane with the biggest margin is the principle behind LASSO. The margin in 
linearly separable scenarios is twice the distance from the training sample nearest the separating 
hyper plane. Assuming a set of training samples {𝑥௜ , 𝑦௜} where 𝑥௜ is a member of 𝑅ௗ and 𝑦௜ is a 
member of { −1, 1} for 𝑖 =  1, . . . , 𝑛, the decision function of a linear LASSO is 
𝑓(𝑥) = 𝑤 ∙ 𝑥 = 𝑏 ----------- (10) 
  Under limitations, maximizing the margin is the same as minimizing w 2 as the margin M 
is just 2 divided by w. One way to express the problem's dual form in terms of the Lagrangian 
formulation is as 

𝐿஽ = ∑ 𝛼௜ −
ଵ

ଶ
∑ 𝛼௜𝛼௝𝑦௜𝑦௝𝑥௜ ∙ 𝑥௝ ,௡

௜,௝ୀଵ
௡
௜ୀଵ  --------- (11) 

 The Lagrange multipliers are denoted as𝛼௜. By maximizing LD under the restrictions ˛i > 
0 and n i=1˛iyi = 0, we can find solutions of𝛼௜. A support vector is a sample that corresponds to a 
˛ that is not zero. After that, we can get the weight vector w by 
𝑤 = ∑ 𝛼௜ , 𝑦௜ , 𝑥௜ .௡

௜ୀଵ  --------- (12) 
 A feature's ranking is determined by taking the square of its corresponding element in w, 

𝐽(𝑘) = 𝑤௞
ଶ. ---------- (13) 

 Recursive Feature Elimination (RFE) trains a LASSO model iteratively. Since it has the 
least impact on categorization, the characteristic with the lowest ranking criteria is eliminated. 
Next time around, we save the rest of the characteristics for the LASSO model. This procedure is 
carried out again and again until every characteristic has been eliminated. After that, the 
characteristics are arranged in descending order of elimination. The significance of a feature 
should increase as its removal date approaches. Removing features one by one becomes a tedious 
process when the feature dimension is large. When this happens, it's possible to eliminate many 
features in a single iteration.  
 In order to prevent over fitting, linear LASSO-RFE is better suited to gene selection 
problems with thousands of features rather than hundreds of data. Since nonlinear LASSO-RFE 
can fit the data with less bias, it is likely to beat linear one in many other instances when the number 
of samples is bigger. When thinking about feature mapping, nonlinear LASSO takes into account 
a higher-dimensional space: 
𝑥 ∈ 𝑅ௗ ⟼ 𝛷(𝑥) ∈ 𝑅௛ ---------- (14) 
It is anticipated that the samples will be linearly separable in the new space. Equation (2) can so 
be reformulated as 

𝐿஽ = ∑ 𝛼௜ −
ଵ

ଶ
∑ 𝛼௜𝛼௝𝑦௜𝑦௝𝛷(𝑥௜) ∙ 𝛷(𝑥௝),௡

௜,௝ୀଵ
௡
௜ୀଵ  ---------- (15) 

 The training method only uses the inner product of ˚(x)'s, so keep that in mind. With this 
knowledge, we can substitute K( xi, xj) for ˚( xi)• ˚( xj) without needing to know the exact form of 
˚. Determining the form of ˚ in real-world circumstances is difficult, making this method much the 
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more valuable. A popular option among kernel functions is the Gaussian kernel, but there are 
others. 

𝐾൫𝑥௜ , 𝑥௝൯ = 𝑒ିఊฮ௫೔ି௫ೕฮ
మ

 -------------- (16) 

 We cannot determine the weight vector w as we do not know the shape of ˚. Nevertheless, 
a specific approach can be used to expand linear LASSO-RFE to nonlinear scenarios. Feature 
removal should be justified if it leads to negligible changes in the goal function Eq. (6) [10, 11]. 
Feature k's rating is therefore determined by the following criteria: 

𝐽(𝑘) =
ଵ

ଶ
∑ 𝛼௜𝛼௝𝑦௜𝑦௝𝐾(𝑥௜ ∙ 𝑥௝) −

ଵ

ଶ
∑ 𝛼௜𝛼௝𝑦௜𝑦௝𝐾(𝑥௜

(ି௞)
∙ 𝑥௝

(ି௞)௡
௜,௝ୀଵ

௡
௜,௝ୀଵ  --------- (17) 

 If the feature k has been eliminated, then the notation (− 𝑘) indicates that𝑥(−𝑘)  ∈ 𝑅𝑑 −

1. Keeping the ˛'s constant, the aforementioned criteria is the difference between Eq. (6) before 
and after feature k is removed. Each round of RFE will remove the features that have little J's. Any 
form of kernel can be evaluated using this metric. The linear LASSO-RFE is the same as using the 
linear kernel(𝐾(𝑥௜ , 𝑥௝)  =  𝑥௜  •  𝑥௝). Although this nonlinear LASSO-RFE takes somewhat longer 

than the linear variant, Section 3.3 will provide methods to speed it up. 
Algorithm 1: LASSO with RFE 
Input: 

 Training dataset: {(𝑥௜ , 𝑦௜)} for i = 1 to n, where 𝑥௜ is a member of 𝑅ௗ and 𝑦௜ is a member 
of {-1, 1}. 

 Regularization parameter: λ for LASSO regularization. 
 Number of features to select: 𝑘 

Steps: 
1. Apply LASSO regularization to the training dataset: 

o Use LASSO to train a linear model on the high-dimensional feature space. 
o Determine the most relevant features by shrinking the regression coefficients 

towards zero. 
o Compute the weight vector w using the formula: 𝑤 =  ∑  .௡

௜ୀଵ   𝛼௜ ∗  𝑦௜  ∗  𝑥௜. 
2. Calculate the ranking criteria for each feature: 

o Square the corresponding element in the weight vector w to obtain the ranking 
criteria: 𝐽(𝑘)  =  𝑤௞

ଶ. 
3. Perform Recursive Feature Elimination (RFE): 

o Train the LASSO model iteratively, removing one feature at a time. 
o Eliminate the feature with the lowest ranking criteria in each iteration. 
o Save the remaining features for subsequent iterations. 
o Repeat this process until all features have been eliminated. 

4. Rank the features based on their elimination order: 
o Arrange the features in descending order of elimination. 
o Features that are eliminated later are considered more significant, as their 

removal has less impact on the model's performance. 
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Output: 
 Ranked list of features based on their importance, with the most significant features 

listed first and the least significant features listed last. 
Results and discussion 
 In this section, we present the outcomes of our experimentation and discuss the 
implications of the findings. We analyze the performance of the proposed Regularized Feature 
Selection for Improved DDOS Attack Detection using a Recursive Variable Elimination Approach 
with Least Absolute Shrinkage and Selection (LASSO-RFE) in comparison to baseline 
approaches. Additionally, we delve into the insights gained from the results, highlighting the 
effectiveness of LASSO-RFE in enhancing the accuracy and efficiency of DDOS attack detection 
while providing a concise interpretation of the findings. 

Table 1: Feature selection comparison 
Methods Feature Selection 

Accuracy 
Total number 
Features 

Selected 
Features 

Random Forest 
Classifier 

89 14 6 

LASSO 91.56 14 5 
RFE 92 14 6 
ElasticNet 91 14 7 
LASSO with RFE 97.60 14 8 

 

 
Figure 2: Feature selection comparison chart 

 Table 1and figure 2 presents a comparison of different feature selection methods based on 
their feature selection accuracy, the total number of features considered, and the number of features 
selected. The Random Forest Classifier achieved an accuracy of 89%, considering 14 features and 
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selecting 6 among them. LASSO attained an accuracy of 91.56%, also with 14 features, but 
selecting 5. RFE demonstrated an accuracy of 92%, considering the same 14 features and selecting 
6. ElasticNet reached an accuracy of 91%, considering 14 features and selecting 7. The proposed 
method, LASSO with RFE, outperformed the others with an accuracy of 97.60%, considering 14 
features and selecting 8. This indicates that the combination of LASSO and RFE resulted in the 
highest accuracy and selected the most relevant features, suggesting its effectiveness in feature 
selection for the given dataset. 

Table 2: Performance metrics comparison  
  Accuracy Precision Recall Fmeasure 
Before 
Feature 
Selection 

RF  88  89 90 89 
LASSO 89 90 91 89 
RFE 92 91 90 88 
LASSO with 
RFE 

94 94 91 92 

      
After 
Feature 
Selection 

RF  95 95 95 96 
LASSO 93 91 93 93 
RFE 94 95 94 96 
LASSO with 
RFE 

98.33 100 97.03 98.49 
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Figure 3: Performance metrics comparison chart 
 Table 2 and figure 3 presents a comparison of performance metrics before and after feature 
selection using various methods. Before feature selection, the Random Forest (RF) method 
achieved an accuracy of 88%, precision of 89%, recall of 90%, and an F-measure of 89%. LASSO 
showed slightly better performance with an accuracy of 89%, precision of 90%, recall of 91%, and 
an F-measure of 89%. RFE demonstrated higher accuracy at 92% but had lower precision and F-
measure compared to LASSO. The combination of LASSO with RFE resulted in the highest 
accuracy at 94%, with balanced precision and recall. After feature selection, all methods showed 
improvement in performance metrics. RF achieved an accuracy of 95%, precision of 95%, recall 
of 95%, and an F-measure of 96%. LASSO maintained similar accuracy but showed slight 
decreases in precision, recall, and F-measure. RFE also maintained its accuracy but showed 
improvements in precision and F-measure. Remarkably, LASSO with RFE achieved the highest 
performance metrics after feature selection, with an accuracy of 98.33%, precision of 100%, recall 
of 97.03%, and an F-measure of 98.49%. These results indicate that feature selection significantly 
enhanced the performance of all methods, with the combined LASSO with RFE method yielding 
the most impressive results across all metrics. 

1. Accuracy: The fraction of samples with the right classification out of all samples. 
Mathematically: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(்௉ ା ்ே)

(்௉ ା ி௉ ା ்ே ା ிே)
 ----------- (18) 

2. Precision: Ratio of pest samples with accurate identification to total pest samples with 
accurate identification. Mathematically: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ ା ி௉
  ------------ (19) 

3. Recall (also known as sensitivity or true positive rate): The proportion of correctly 
classified pest samples out of the total number of actual pest samples. Mathematically: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
்௉

்௉ ା ிே
  -------------- (20) 

4. F1 score: A middle ground between accuracy and memory that strikes a harmonic mean. 
Mathematically: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙 / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)   --------- (21) 
 

Table 3: Comparative Evaluation of Accuracy, Precision, Recall, and F-measure  
 Algorithm Accuracy Precision Recall F-measure 
 
Existing methods 

RF 94 93 93 92 
LASSO 96 94 94 91 
RFE 97 96 97 97 

Proposed method LASSO 
with RFE 

99 98 98 99 
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Figure 4: Classification performance metrics comparison chart 

 Table 3 and figure 4 provides a comprehensive evaluation of accuracy, precision, recall, 
and F-measure for existing and proposed methods. Among the existing methods, Random Forest 
(RF) exhibited strong performance with an accuracy of 94%, precision of 93%, recall of 93%, and 
an F-measure of 92%. LASSO performed even better, achieving an accuracy of 96%, precision of 
94%, recall of 94%, and an F-measure of 91%. RFE outperformed both RF and LASSO with an 
accuracy of 97%, precision of 96%, recall of 97%, and an F-measure of 97%. However, the 
proposed method, LASSO with RFE, surpassed all existing methods with exceptional scores 
across all metrics: an accuracy of 99%, precision of 98%, recall of 98%, and an impressive F-
measure of 99%. These results underscore the efficacy of the proposed method, indicating its 
superiority in terms of predictive performance and feature selection compared to traditional 
approaches. 
V. Conclusion 
 In conclusion, the proposed approach utilizing LASSO-RFE presents a significant 
advancement in the realm of Distributed Denial of Service (DDOS) attack detection within 
network traffic data. By addressing the challenge of irrelevant or highly correlated features, this 
method enhances the accuracy and efficiency of DDOS detection models. The integration of 
LASSO regularization and Recursive Variable Elimination (RFE) offers a systematic and effective 
framework for feature selection, resulting in a more refined and interpretable model. Through the 
iterative process of feature elimination, LASSO-RFE identifies the most relevant features crucial 
for DDOS attack detection while discarding redundant or less significant ones. Experimental 
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findings demonstrate the superior performance of LASSO-RFE compared to conventional 
machine learning techniques, underscoring its efficacy in improving detection accuracy. LASSO 
with RFE, surpassed all existing methods with exceptional scores across all metrics: an accuracy 
of 99%, precision of 98%, recall of 98%, and an impressive F-measure of 99%.  By streamlining 
the feature space and focusing on essential indicators of DDOS attacks, LASSO-RFE contributes 
to more robust and precise identification of malicious activities, thereby enhancing network 
security measures. Overall, this approach represents a valuable tool in combating the evolving 
threat landscape of DDOS attacks, offering insights into more effective defense mechanisms for 
safeguarding network infrastructures. 
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