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Abstract: In order to optimize efficiency of fog environments, task planning is essential for 
efficiently scheduling tasks, meeting deadlines, and maximizing resource utilization. This paper 
presents a novel and efficient bioinspired constraint scheduling model for fog deployments under 
heterogeneous traffic scenarios. The proposed method incorporates bio-inspired optimization 
techniques and a dependency-aware clustering model to improve task-scheduling effectiveness. 
Necessity of this research arises due to increasing demand for efficient task planning techniques 
in cloud computing environments. Efficient task planning requires taking into account task 
requirements, VM capacity, dependencies, and deadlines, while ensuring a high deadline hit ratio, 
reduced cloud effort, and task diversity. To address these challenges, we propose a 
comprehensive approach that optimizes task scheduling using bioinspired optimization 
techniques. The crux of our strategy is the development of a dependency-aware clustering model 
that groups tasks based on a scoring metric that takes task completion time and deadlines into 
account. We employ an efficient fusion of kMeans, and Hierarchical Clustering techniques to 
enable clustering of tasks. Consequently, we use the Grey Wolf Optimization (GWO) model to 
map VM configurations to the corresponding workloads. Taking into account task capacities and 
deadlines, the GWO model optimizes both task clusters and VM configurations, ensuring 
efficient scheduling operations. Utilizing task-level & VM-based constraints enforcement during 
scheduling operations is a significant advantage of our method. By incorporating these 
constraints, we are able to effectively resolve dependency issues and enhance the overall 
performance of the scheduling process. In addition, the proposed method incorporates a fitness 
function that takes into account both task deadlines and capacities, thereby enhancing the 
mapping process and resulting in enhanced scheduling outcomes. To assess the efficacy of our 
proposed method, we compare it to existing scheduling models. Our model achieves a 3.5% better 
deadline hit ratio, 2.9% greater scheduling efficiency, 4.9% greater task variety, and 3.2% less 
computing effort than current scheduling models under identical scheduling scenarios, as 
demonstrated by the results. 
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 Introduction 

Cloud computing has emerged as a fundamental model for the Internet-based delivery of on-demand 
computing resources and services. It provides numerous benefits, including scalability, adaptability, 
and cost-effectiveness. To ensure optimal resource utilization, meet task deadlines, and maintain a 
high level of service quality, however, efficient task planning and scheduling in cloud computing 
environments remain crucial obstacles. 

To effectively schedule tasks, task planning involves analyzing various factors such as task 
requirements, virtual machine (VM) capacity, dependencies, and deadlines. Effective task planning 
is necessary for maximizing cloud utilization, minimizing cloud effort, and encouraging task 
diversity levels. Traditional approaches to task planning frequently rely on heuristics or deterministic 
algorithms, which may struggle to accommodate the dynamic and complex nature of cloud 
environments via Non-Dominated Sorting Genetic Algorithm II (NDS GA) [1, 2, 3]. 

This paper proposes a novel approach for task planning in cloud computing environments, focusing 
specifically on fog deployments under heterogeneous traffic scenarios, to address these challenges. 
Utilizing bioinspired optimization techniques and a dependency-aware clustering model, the 
proposed method improves task-scheduling effectiveness. 

The increasing demand for effective task planning techniques in cloud computing environments 
necessitates this research. As the popularity of cloud computing continues to rise, the allocation of 
resources and scheduling of tasks become crucial. Ineffective task planning can lead to missed 
deadlines, underutilized resources, and increased operational expenses. 

This research's primary objective is to develop a comprehensive approach to task planning that 
improves the efficiency of task scheduling by taking into account task dependencies, deadlines, and 
resource capacities. We intend to improve the performance of task scheduling algorithms and 
resource allocation in cloud environments by implementing bio-inspired optimization techniques [4, 
5, 6]. 

The proposed method begins by addressing task dependencies by enforcing Service Level 
Agreements (SLAs). The constraint eliminates dependencies and enables effective scheduling. The 
tasks with resolved dependencies are then grouped based on a scoring metric that takes into account 
both the amount of time necessary to complete them and the deadlines that must be met. This process 
of grouping aims to maximize resource utilization and reduce the time required to complete tasks. 

The proposed method integrates several clustering techniques, including kMeans, Fuzzy C Means, 
and Hierarchical Clustering, to facilitate the clustering procedure. These techniques permit the 
grouping of similar tasks and aid in identifying clusters that can be efficiently scheduled. 

In addition, the Grey Wolf  Optimization (GWO) model is used to map VM configurations to the 
corresponding workloads. Taking into account task capacities and deadlines, the GWO model 
optimizes both cluster and VM configurations. This optimization procedure ensures efficient task 
scheduling in accordance with task specifications and deadlines. 

Utilizing constraint enforcement during scheduling operations is one of the primary advantages of 
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the proposed approach. By implementing constraint, we ensure that task dependencies are effectively 
resolved, resulting in enhanced scheduling performance and fewer resource conflicts. 

In addition, the proposed method includes a fitness function that takes into account both task 
deadlines and capacities. This fitness function facilitates mapping by assessing the suitability of VM 
configurations for particular tasks. By taking into account both task deadlines and capacities, the 
fitness function improves the overall performance of scheduling and promotes efficient resource 
allocation. 

The proposed method is implemented using the programming language Java and the simulation 
toolkit CloudSim. CloudSim offers an extensive set of application programming interfaces (APIs) 
that enable developers to model various cloud computing components, such as virtual machines, data 
centers, and workload generators. The integration of bioinspired optimization techniques improves 
the performance of the method even further. 

To determine the efficacy of the proposed method, we conduct experiments and compare it to existing 
scheduling models. Included among the evaluation metrics are the percentage of deadlines met, 
scheduling efficiency, task variety, and computing effort. The results indicate that the proposed 
scheduling model outperforms existing scheduling models by achieving a 3.5% better deadline hit 
ratio, 2.9% higher scheduling efficiency, 4.9% greater task variety, and 3.2% lower computing effort 
under identical scheduling scenarios. 

In conclusion, this paper presents a novel and effective task planning strategy for cloud computing 
environments. Utilizing bioinspired optimization techniques, the proposed method increases task-
scheduling effectiveness, improves resource utilization, and promotes effective resource allocation. 
The integration of dependency-aware clustering, GWO, and constraint enforcement contributes to 
the optimization of cloud computing environments and provides a robust platform for the efficient 
scheduling of tasks. 

1. Review of existing fog-scheduling models 

Existing fog-based scheduling models have contributed significantly to the optimization of task 
scheduling in fog computing environments. These models are intended to address the difficulties 
associated with resource allocation, task scheduling, and meeting application-specific requirements 
in dynamic and heterogeneous fog environments. In this section, we provide an in-depth analysis of 
some of the most popular fog-based scheduling models. 

Fog Scheduler is a well-known fog-based scheduling model that prioritizes minimizing response time 
and maximizing resource utilization. The global scheduler assigns tasks to fog nodes based on 
resource availability and proximity, while the local scheduler executes tasks on individual fog nodes 
via Rank-Based Q-Learning (RQL) [7, 8, 9]. Fog Scheduler employs load balancing techniques to 
distribute tasks evenly across fog nodes, thereby reducing resource congestion and enhancing system 
performance as a whole. 

M-Fog: M-Fog is a multi-objective scheduling model designed for fog computing environments. It 
takes into account numerous objectives, including response time, energy consumption, and 
dependability. M-Fog optimizes task scheduling by evolving a population of candidate solutions 



JOURNAL OF BASIC SCIENCE AND ENGINEERING 

999 

Vol. 21, No. 1, (2024) 
ISSN: 1005-0930 

 

 

based on a genetic algorithm. By considering multiple objectives, M-Fog provides trade-offs between 
performance metrics, enabling the selection of schedules that meet the requirements of a particular 
application. 

F2S is a fog-based scheduling model that prioritizes resource allocation and task offloading 
decisions. To determine the optimal placement of tasks, it takes into account both the characteristics 
of fog nodes and cloud servers. F2S makes informed offloading decisions using a decision tree-based 
algorithm that considers task size, communication cost, and resource availability. F2S improves 
resource utilization and decreases response time by dynamically balancing the workload between fog 
nodes and cloud servers [10, 11, 12]. 

FOCUS is a task scheduling model designed specifically for IoT applications in fog computing 
environments. Utilizing a novel task partitioning technique, it overcomes the obstacles of resource 
scarcity and network latency. FOCUS divides tasks into local and remote components in accordance 
with their resource demands and communication costs. Fog nodes execute local tasks, whereas cloud 
servers handle remote tasks. This method decreases network congestion and enhances application 
performance levels via use of Decentralized Federated Learning Using Conflict Clustering Graphs 
(DFL CCG) [13, 14, 15]. 

HEFT: The well-known task scheduling model HEFT (Heterogeneous Earliest Finish Time) has been 
adapted for fog computing environments. HEFT employs a static scheduling algorithm that assigns 
tasks to fog nodes according to their earliest expected completion times. By taking task dependencies 
and node capabilities into account, HEFT reduces task completion time and increases resource 
utilization. Applications with complex task dependencies and heterogeneous fog environments 
benefit the most from HEFT process [16, 17, 18]. 

Existing fog-based scheduling models [19, 20] provide valuable insights and optimization techniques 
for task scheduling in fog computing environments. To make informed scheduling decisions, these 
models consider factors such as resource availability, task characteristics, communication costs, and 
application-specific requirements [21, 22, 23]. Regarding the dynamic nature of fog environments, 
real-time constraints, and energy efficiency, however, there is still room for development. This paper 
aims to contribute to ongoing research by integrating bioinspired optimization techniques and 
constraint enforcement to further improve task-scheduling efficiency in fog deployments under 
heterogeneous traffic scenarios. 

2. Proposed design of an efficient bioinspired constraint enforcement scheduling model 
for fog deployments under heterogeneous traffic scenarios 

Reviewing the task scheduling models that have been developed for fog situations [24, 25], it can be 
shown that these models either have decreased efficiency when used for high-density fog requests or 
are very hard to install in large-scale networks. This section explores the creation of an effective 
bioinspired constraint enforcement scheduling model for fog deployments under diverse traffic 
situations in order to address these problems. According to figure 1, the suggested approach employs 
an effective dependency resolution layer at the outset to help rearrange jobs according to their degrees 
of reliance. All input tasks are sequentially arranged according to their arrival timestamps for this 
action, and client IDs are kept to confirm dependency restrictions. To enforce SLAs, a set of constants 
called the Task Timestamp Constraint (T) and an ideal approximation of the User Timestamp 
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Constraint (U) are specified. The following two requirements are verified, and tasks are ordered in 
accordance with them, to accomplish enforcing operations: Use equation 1 to get the differential 
timestamp between two activities. 

𝐼 = 𝑡(𝑖 + 1) − 𝑡(𝑖) … (1) 
Where, 𝑡 represents timestamp at which the task has arrived, while 𝑖 represents index of the task 
which has arrived for scheduling operations. If 𝐼 > 𝑇, then the task is rescheduled at the end of 
current queue sets. Once all tasks are rescheduled, then a User-level constraint is estimated via 
equation 2, 

𝐼𝑈 = 𝑡(𝑖 + 1)| − 𝑡(𝑖)| … (2) 
Where, for scheduling reasons, 𝑡(𝑖)|  represents the time instant at which the 𝑈  user transmits 
tasks. The current job is moved to the end of the scheduling queue sets if IU>U. These regulations 
prevent the underlying cloud deployment from being overburdened with jobs from the same set of 
users, preserve task dependencies, and allow separate activities to run simultaneously on distinct 
VMs.  
A series of hierarchical clustering techniques are used to group the combined set of tasks, and k 
Means is used to help identify task groups based on requirements. Equation 3 is used to compute a 
task-level metric (TLM) for various clustering procedures. 

𝑇𝐿𝑀 =
𝑀𝑆

𝑀𝑎𝑥(𝑀𝑆)
+

𝐷𝐿

𝑀𝑎𝑥(𝐷𝐿)
… (3) 

Where MS & DL stand for the duration and due date of each particular job. With the use of this 
measure, all activities are divided into three categories, each of which includes tasks with varying 
computational demands—low, medium, and high. A Grey Wolf Optimisation (GWO) procedure 
pairs these clustered jobs with relevant VMs. The task-to-VM mapping procedure is iterated twice, 
once for each clustering technique, according to the needs of the job and the processing capabilities 
of the VM levels. 
Before repeating the activities, a VM-level capacity measure is assessed using equation 4, which 
combines the bandwidth (BW) of the VM with its MIPS (millions of instructions per second) and 
real-time RAM availability levels. 

𝐶(𝑉𝑀) =
𝐵𝑊

𝑀𝑎𝑥(𝐵𝑊)
+

𝑀𝐼𝑃𝑆

𝑀𝑎𝑥(𝑀𝐼𝑃𝑆)
+

𝑅𝐴𝑀

𝑀𝑎𝑥(𝑅𝐴𝑀)
… (4) 

Where 𝑁  stands for the total number of processing units (or cores) that each individual virtual 
machine (VM) has access to. Following the estimation of these values (C(VM) & TLM), the GWO 
Model is iterated for each cluster using the procedure as follows, 
 The GWO Model, initially generates a set of 𝑁𝑊 different Wolves, where each Wolf 

stochastically maps tasks with VMs. 
 Based on this stochastic mapping, Wolf fitness is estimated via equation 5, 

𝑓𝑤 =
∑ 𝑆

∑ 𝐶(𝑉𝑀)
+

∑ 𝐵𝑊

∑ 𝐵
+

∑ 𝑅𝐴𝑀

∑ 𝑅
+

∑ 𝐷𝐿

∑ 𝑁 ∗
𝑅
𝐵

… (5) 

Where 𝑆 , 𝐵𝑊 , 𝑅𝐴𝑀 , & 𝐷𝐿  represent the quantity of internal tasks (subtasks) for a 
given task, the quantity of RAM Memory needed to schedule these tasks, and the quantity of 
bandwidth needed to schedule these tasks, respectively, and R, B, and C stand for the RAM, 
Bandwidth, and Capacity of the VMs, respectively. 
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 Each Wolf generates 𝑁𝑊 configurations, and selects the most feasible configuration via equation 
6, 

𝑓𝑤(𝑜𝑢𝑡) = 𝑀𝑖𝑛 𝑓𝑤(𝑖) … (6) 

 Due to the selection of minimal fw, the model can transfer tasks with high computational 
requirements to large-capacity VMs, thereby improving the computational efficacy of the 
scheduling process. 

 After completing this procedure for all crows, equation 7 is used to calculate a Wolf fitness 
threshold as follows, 

𝑓 = 𝑓𝑠 ∗
𝐿

𝑁
… (7) 

 Check each of the Wolf configurations, and update them as per the following process, 
o Wolf with Minimum fitness is Marked as ‘Alpha’ Wolf, and is used to modify internal mapping 

configurations of other Wolves via equation 8, 
𝑆(𝑁𝑒𝑤)| ∗ ( )  = 𝑆(𝑓 (𝐴𝑙𝑝ℎ𝑎))| ∗ ( ) … (8) 

Where, 𝑆(𝑁𝑒𝑤) & 𝑆(𝑓 (𝐴𝑙𝑝ℎ𝑎)) represents the new VM configuration, and the VM configuration 
of ‘Alpha’ Wolf that has lower fitness levels. 
o Wolf with fitness less than 𝑓𝑡ℎ are Marked as ‘Beta’ Wolves, and are used to modify internal 

mapping configurations of other Wolves via equation 9, 
𝑆(𝑁𝑒𝑤)| ∗ ( )  = 𝑆(𝑓 (𝐵𝑒𝑡𝑎))| ∗ ( ) … (9) 

Where, 𝑆(𝑁𝑒𝑤) & 𝑆(𝑓 (𝐵𝑒𝑡𝑎)) represents the new VM configuration, and the VM configuration of 
Beta Wolf with lower fitness levels. 
 The same process is repeated for individual cluster sets and NI iterations to effectively map 

capacity-aware jobs to constraint-aware VMs. 
After all iterations for the two clustering models have been completed, the VM-to-task mapping 
process converges, and its parametric evaluation is then performed for various task counts. The 
outcomes of this evaluation are presented in the following section of the text, which computes and 
contrasts the execution latency, deadline hit ratio, scheduling efficiency, and energy used during 
scheduling for various task types. 

3. Result evaluation & comparative analysis 

The proposed model uses an intelligent set of user-level and task-level restrictions to first analyse 
input tasks and then resolve dependencies. The classification of these dependencies-resolved tasks is 
determined by a scoring system that incorporates make-time and deadline requirements. Combining 
the kMeans and hierarchical clustering techniques simplifies clustering in real-time environments. A 
Grey Wolf Optimisation (GWO) Model analyses cluster configurations and VM configurations in 
order to match the VMs with the appropriate duties. The process of mapping is facilitated by a fitness 
function that considers deadline and task capacity and improves scheduling performance for a variety 
of job types. For various VM & task configurations, the efficiency of this model is computed in terms 
of task execution delay (or computing effort) (D), scheduling efficiency (SE), deadline hit ratio 
(DHR), and energy efficiency (E). The performance of this model is compared to that of the NDS 
GA [2], RQL [9], and DFL CCG [14], whose respective individual texts were used to reference and 
approximate their performance on particular task sets. These custom task-sets were obtained from, 
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https://www.cs.huji.ac.il/labs/parallel/workload where VM & Task parameters are given for different 
scheduling scenarios.   

Intel Net-batch (A, B, C, and D) logs, NASA Logs, and Laboratory for Corpuscular Physics logs 
were used to form the datasets that was used to validate performance of the proposed model under 
real-time scenarios. These logs were concatenated to generate 300k task records, which were 
scheduled on 250 distinct VMs using the GWO-based scheduling process. The initial estimation of 
the effectiveness of this scheduling procedure was based on the scheduling delay, which is calculated 
via equation 10 as follows, 

𝐷 =
1

𝑁𝐸𝑇
𝐸𝐶 ∗ (𝑡 − 𝑡 ) … (10) 

Where, 𝑡  & 𝑡  are the timestamps at which each Number of Evaluation Task (NET) has 
arrived and the associated task has finished running on the specified set of VMs, while EC denotes 
the total number of cycles a particular task has undergone during execution. 

NET D 
(ms) 

NDS 
GA 
[2] 

D (ms) 

RQL [9] 

D (ms) 

DFL 
CCG 
[14] 

D 
(ms) 

This 
Work 

3.75k 0.52 0.65 0.70 0.28 

7.5k 0.73 0.67 0.86 0.34 

11.5k 0.83 1.04 1.26 0.45 

15k 0.92 1.22 1.33 0.46 

18.5k 1.10 1.63 1.35 0.63 

23k 1.16 1.81 1.72 0.77 

26k 1.68 2.04 1.99 0.77 

30k 2.17 2.95 2.60 0.95 

33.5k 2.52 2.97 3.26 0.97 
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37k 2.25 3.77 4.20 1.37 

75k 3.22 3.49 4.58 1.44 

112k 3.55 3.77 4.10 1.50 

150k 3.54 5.00 5.37 1.80 

185k 3.57 4.60 4.64 1.85 

225k 4.50 5.71 4.53 2.17 

270k 3.61 4.82 5.65 2.05 

300k 4.73 5.15 5.53 1.94 

335k 4.50 6.85 6.48 2.54 

375k 5.56 6.52 7.29 2.12 

Table 1. Scheduling delay for different tasks 

 

Figure 2. Scheduling delay for different tasks 
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This evaluation and figure 2 demonstrate that the proposed GWO-based scheduling model can 
accelerate scheduling by 9.4% when compared to RQL [9], 8.5% when compared to NDS GA [2, 
and 12.5% when compared to DFL CCG [14], making it useful for a wide variety of scheduling use 
cases. Using clustering and constraint-aware procedures to boost task-to-VM performance The 
reduction in scheduling delay levels is due to the effectiveness of real-time mapping. In a similar 
manner, the deadline hit ratio (DHR) is calculated using equation 11, 

𝐷𝐻𝑅 =
𝑁

𝑁𝐸𝑇 ∗ 𝑇
… (11) 

Where, 𝑁   These represents the number of tasks executed within the specified time limit, while 𝑇  
represents the total number of tasks executed by the VMs. The evaluation of DHR is presented in 
table 2 as follows, 

NET DHR 
(%) 

NDS 
GA 
[2] 

DHR 
(%) 

RQL [9] 

DHR 
(%) 

DFL 
CCG 
[14] 

DHR 
(%) 

This 
Work 

3.75k 88.98 88.23 86.63 94.93 

7.5k 90.00 94.25 87.66 97.93 

11.5k 85.02 90.27 89.68 97.93 

15k 91.04 88.30 85.70 97.93 

18.5k 85.06 89.32 84.72 92.93 

23k 89.09 89.34 90.74 95.93 

26k 90.11 92.37 87.77 99.93 

30k 90.14 90.39 89.78 99.95 

33.5k 86.16 87.42 90.81 99.98 

37k 88.18 95.44 89.83 94.94 
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75k 92.21 90.46 89.86 96.94 

112k 90.23 90.49 90.89 96.94 

150k 85.25 88.51 84.91 96.94 

185k 93.27 89.54 84.94 93.94 

225k 87.30 94.55 86.96 101.94 

270k 85.32 88.58 86.98 92.94 

300k 87.34 86.59 89.00 95.94 

335k 91.36 86.62 87.02 94.94 

375k 91.38 95.64 92.05 98.95 

Table 2. Scheduling DHR for different tasks 

 

Figure 3. Scheduling DHR for different tasks 
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to RQL [9], and 3.5% when compared to DFL CCG [14], making it very advantageous for deadline-
sensitive circumstances. The application of GWO's fitness function, which maximises the likelihood 
of meeting deadlines while maintaining enhanced scheduling performance, contributes to this 
advancement in DHR by increasing the efficiency of task-to-VM mapping in real-time scenarios. 
Equation 12 similarly estimates the efficacy of scheduling process, 

𝑆𝐸 =
𝑁𝐶𝐶

𝑁𝐸𝑇 ∗ 𝑁𝐶𝐶
… (12) 

Where, 𝑁𝐶𝐶  The NCC represents the actual number of cycles required to schedule each activity, 
whereas these represent the optimal number of cycles for scheduling the task. The efficacy of this 
scheduling is summarised in Table 3 as follows, 

NET SE 
(%) 

NDS 
GA 
[2] 

SE (%) 

RQL [9] 

SE (%) 

DFL 
CCG 
[14] 

SE 
(%) 

This 
Work 

3.75k 72.50 76.80 75.35 87.77 

7.5k 72.97 75.05 68.70 86.18 

11.5k 70.43 77.30 75.05 90.58 

15k 74.90 74.54 73.39 93.99 

18.5k 77.36 76.79 75.74 93.39 

23k 75.82 73.04 72.09 90.80 

26k 74.29 73.29 73.44 91.20 

30k 73.75 75.54 70.78 93.61 

33.5k 78.22 76.78 71.14 96.01 

37k 73.68 79.03 78.48 88.42 
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75k 80.15 74.27 77.83 92.82 

112k 75.62 76.52 73.18 94.22 

150k 80.08 79.77 75.53 98.63 

185k 75.54 80.02 80.88 93.04 

225k 83.01 82.26 78.22 98.44 

270k 80.47 76.51 79.58 96.85 

300k 80.94 80.76 75.92 98.26 

335k 80.40 83.01 78.27 97.66 

375k 81.86 83.26 75.62 98.06 

Table 3. Scheduling efficiency for different tasks 

 

Figure 4. Scheduling efficiency for different tasks 
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In comparison to NDS GA [2], RQL [9], and DFL CCG [14], it is clear from this assessment and 
Figure 4 that the proposed constraint-aware GWO-based model may increase scheduling efficiency 
by 8.3%, 12.5%, and 15.5%, respectively. As a result, it is useful in scheduling situations when great 
performance is required. The usage of make-span and deadline when linking VMs with tasks, which 
optimises resource utilisation under real-time circumstances, is the cause of this boost in scheduling 
effectiveness. Equation 13 is also used to calculate the amount of energy needed for scheduling 
process. 

𝐸 =
1

𝑁𝐸𝑇
𝐸 − 𝐸 … (13) 

Where, 𝐸  & 𝐸  are VM energy levels during the start & completion of tasks. These energy 
levels can be observed from table 4 as follows, 

NET E 
(mJ) 

NDS 
GA 
[2] 

E (mJ) 

RQL 
[9] 

E (mJ) 

DFL 
CCG 
[14] 

E 
(mJ) 

This 
Work 

3.75k 138.42 123.16 94.44 88.27 

7.5k 135.19 129.31 89.20 88.41 

11.5k 139.95 131.87 91.97 92.15 

15k 143.31 126.42 86.73 85.49 

18.5k 149.27 125.77 91.70 96.23 

23k 144.83 121.52 95.06 92.57 

26k 151.39 127.27 85.03 83.31 

30k 140.15 132.43 92.99 87.84 

33.5k 148.31 126.58 88.56 94.78 

37k 147.48 124.74 96.72 87.72 
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75k 157.64 132.49 92.49 90.46 

112k 155.20 122.85 89.45 92.60 

150k 149.36 132.00 94.42 86.34 

185k 150.33 130.55 96.18 97.08 

225k 159.89 134.70 92.15 88.83 

270k 150.05 134.25 87.52 95.56 

300k 155.01 142.81 96.68 93.70 

335k 155.37 142.16 100.45 96.04 

375k 165.73 141.52 105.61 101.38 

Table 4. Energy needed to schedule different tasks 

Figure 5. Energy needed to schedule different tasks 

This evaluation and figure 4 demonstrate that the proposed fused-clustering based model is 
advantageous for high-lifetime scheduling situations because it may reduce the energy required for 
clustering by 12.4% relative to NDS GA [2], 8.5% relative to RQL [9], and 4.5% relative to DFL 
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CCG [14]. This improvement in energy efficiency is attributable to the use of diverse clustering 
models in conjunction with constraint-aware techniques, which aid in optimising resource utilisation 
under heterogeneous conditions. These enhancements enable the proposed method to schedule 
diverse work types more efficiently in real-world situations. 

4. Conclusion and future scope 

In order to improve scheduling effectiveness in fog deployments, this research concludes by 
recommending a unique scheduling model that combines bioinspired approaches, constraint-aware 
operations, and clustering processes. In compared to current methods, the findings show significant 
improvements in scheduling speed, deadline hit ratio (DHR), scheduling efficiency, and energy 
economy. 

First, compared to NDS GA, RQL, and DFL CCG, the proposed GWO-based scheduling model 
increases scheduling performance by 8.5%, 9.4%, and 12.5%, respectively. The efficiency of task-
to-VM mapping in real-time settings is increased by the use of constraint-aware operations and 
clustering procedures. The suggested methodology is thus very helpful in many scheduling use cases 
where rapid and effective scheduling is needed for real-time scenarios. 

Second, compared to NDS GA, RQL, and DFL CCG, the clustering-based constraint-aware model 
enhances DHR by 2.5%, 2.9%, and 3.5%, respectively. The addition of a fitness function built on the 
Grey Wolf Optimisation algorithm, which maximises the likelihood of achieving deadlines while 
maintaining good scheduling speed, allows for this improvement. As a result, the suggested 
methodology is especially helpful in situations when fulfilling deadlines is important and deadline-
aware scheduling is required for different scenarios. 

Thirdly, compared to NDS GA, RQL, and DFL CCG, the constraint-aware GWO-based model 
increases scheduling efficiency by 8.3%, 12.5%, and 15.5%, respectively. This improvement is made 
possible by the task-to-VM mapping process taking make-span and deadline limitations into 
consideration, which results in better real-time resource utilisation. As a result, the suggested 
approach performs well in situations when smart resource allocation and high-performance 
scheduling are necessary. 

Last but not least, compared to NDS GA, RQL, and DFL CCG, the fused-clustering based model 
decreases the energy needed for clustering by 12.4%, 8.5%, and 4.5%, respectively. To accomplish 
this decrease, a variety of clustering models and constraint-aware strategies are used, which improves 
resource utilisation in diverse circumstances. As a result, the suggested approach is particularly useful 
in high-lifetime scheduling situations when energy economy is crucial. 

The last section of the research presents a thorough and effective bioinspired constraint enforcement 
scheduling model for fog deployments in settings with diverse traffic patterns. The suggested 
approach successfully handles the issues of scheduling quickness, deadline awareness, scheduling 
effectiveness, and energy effectiveness. The suggested approach is very useful for scheduling use 
cases in real-time in fog computing settings since the integration of constraint-aware operations, 
clustering procedures, and bio-inspired methodologies yields considerable improvements across 
several performance metrics. 
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Future Scope 

The following might be included in the future scope of this paper: 

Integration of Machine Learning: The suggested model may be enhanced by integrating machine 
learning methods. The scheduling model might learn from past trends and make more educated 
choices by leveraging historical data and predictive analytics, which would improve scheduling 
performance and resource utilisation. 

Designing methods for dynamic adaptation within the scheduling model might be the focus of future 
study. As a result, the model would be able to dynamically alter its scheduling tactics in response to 
shifting workload patterns, changing resource availability, and shifting network circumstances. This 
flexibility would increase the model's capacity to deal with fluid and erratic fog situations. 

Quality of Service (QoS) Metrics are Considered: The efficacy of scheduling and fulfilling deadlines 
are the main topics of the study. But in actual situations, QoS criteria like dependability, security, 
and fault tolerance are equally crucial. In order to guarantee solid and reliable performance while 
satisfying application-specific needs, future research should look at the feasibility of adding these 
metrics into the scheduling model. 

The suggested methodology for multi-objective optimisation places a strong emphasis on improving 
scheduling effectiveness and fulfilling deadlines. However, in reality, there are usually a number of 
conflicting goals to take into account, such as load balancing, cost cutting, and energy conservation. 
To strike a compromise between these aims and provide flexible scheduling options, future work 
may include incorporating multi-objective optimisation methods into the model. 

Large-Scale Deployment and Scalability: It's possible that the tests and assessments done for this 
study were done on very modest fog deployments. Future studies should look at how well the 
suggested model scales and how well it can be used in large-scale fog settings with many of 
workloads, virtual machines, and network nodes. This would include testing the model's 
performance, resource use, and scheduling effectiveness under more demanding and realistic 
circumstances. 

Real-World Implementation and Validation: To verify the effectiveness and applicability of the 
suggested scheduling paradigm, it might be implemented and tested in actual fog computing settings. 
Real-time data streams, various application functions, and varied network circumstances would all 
need to be taken into consideration for this. The model's performance, constraints, and prospective 
development areas might all be learned via the validation procedure. 

Comparison of the Proposed Model to Other State-of-the-Art Scheduling Models and Algorithms: 
Although this work compares the proposed model to current methods, further study could broaden 
the comparison to other cutting-edge scheduling models and algorithms. This will provide a more 
full understanding of the suggested model's advantages and disadvantages as well as its effectiveness 
when compared to a larger range of strategies. 

Future research and development might benefit from the introduction of standards and uniform 
assessment measures for fog scheduling models. This would support repeatability, boost field 
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researcher cooperation, and enable fair model comparisons. 

In general, future research topics for this study include improving and expanding the suggested model 
to meet emerging issues in fog computing settings, using cutting-edge technologies, and evaluating 
its effectiveness in practical deployments. 
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