
JOURNAL OF BASIC SCIENCE AND ENGINEERING

1035

Vol. 21, No. 1, (2024)
ISSN: 1005-0930

A STUDY OF GPGPU COMPUTATIONAL DEVELOPMENT FOR EMBEDDED
DEVICES

Narayana Murty N1

1Research scholar, Department of Electronics and Electrical Engineering, Lovely Professional
University.

nnmlinux@gmail.com.
Dr. Harjit Singh2

2 Associate Professor, Department of Computer Science and Engineering, Lovely Professional
University.

harjit.14952@lpu.co.in

Abstract: Embedded devices are increasingly demanding high computational power for AI and ML
applications. This paper explores the architectural, operating system, and software development
challenges associated with integrating General-Purpose computing on Graphics Processing Units
(GPGPU) into embedded systems. The paper highlights the diverse approaches adopted by vendors
to bring GPUs closer to CPUs. It discusses the challenges of real-time computing deadlines due to
the lack of hardware preemption in GPGPUs and explores potential software solutions. The
limitations of current operating system support for GPGPUs are addressed, emphasizing the lack of
control over execution context compared to CPUs. The role of frameworks like CUDA and OpenCL
in facilitating GPGPU programming and integrating with other computing devices (FPGAs, TPUs,
DSPs) is explored. The paper advocates for OpenCL as a more widely accepted platform for GPGPU
computations, contrasting it with CUDA's hardware specificity. The challenges faced by
programmers in choosing frameworks and designing applications for diverse hardware and software
environments are discussed. The paper concludes by outlining a focus on three areas for further
exploration: architectural development of devices, operating system adaptations, and the evolution
of frameworks for GPGPU programming in embedded systems.
Keywords: GPGPU, GPU scheduling, open CL

 INTRODUCTION:

The Rise of AI and ML in Embedded Devices: Challenges and Solutions
The growing use of artificial intelligence (AI) and machine learning (ML) in embedded devices has
created a demand for more powerful processing. This has led to significant changes in the architecture
of embedded Systems-on-Chip (SoCs) and their software. This paper explores these architectural
changes, operating system challenges, and application adaptations in detail.
The GPU Integration Challenge
Initially, different vendors took various approaches to integrate GPUs closer to host CPUs. These
efforts involved fusion architectures and innovative memory access methods. However, the software

JOURNAL OF BASIC SCIENCE AND ENGINEERING

1036

Vol. 21, No. 1, (2024)
ISSN: 1005-0930

and operating system interfaces for these computing devices differ greatly.
Real-Time Constraints and Preemption
Most embedded systems operate with strict deadlines for real-time computations. Traditional
General-Purpose computing on GPUs (GPGPUs) lack hardware support for preemption, making
context switching a major challenge for real-time tasks. Software solutions are being explored to
address this issue.
Limited OS Control over GPUs
Currently, GPGPU fusion devices are not fully utilized within the operating system context. The
existing GPU interface resembles other devices, offering limited control over execution. Unlike CPU
tasks that benefit from schedulers, I/O management, and memory management, GPU tasks run under
a device context without guaranteed execution time. This prevents the operating system from using
the GPU for tasks like disk drive encryption.
The Rise of Programming Frameworks
Frameworks like CUDA and OpenCL are instrumental in bringing GPU computing power to general
applications. These frameworks not only provide an interface for GPU-CPU integration but also
support other computing devices like FPGAs, TPUs, and DSPs. OpenCL is gaining wider acceptance
as a unified platform for GPGPU computing, although CUDA remains popular for NVIDIA devices.
However, CUDA is not designed for operating system integration or performance optimization – its
focus is purely on application portability. This can lead to challenges for programmers who must
choose the right framework based on their hardware and application needs.
Focus of the Paper
The following sections delve deeper into GPGPU programming and development considerations.
Our study is divided into three main areas: architectural development of devices, operating system
context, and the role of different frameworks.
A. GPU Architecture for Enhanced Heterogeneous SoC Performance:

The semiconductor industry is actively tackling challenges associated with heterogeneous
SoCs, which integrate different processing cores like CPUs and GPUs on a single chip. This paper
explores how a RISC-V based general-purpose GPU with OpenCL support is being implemented to
address these issues.The proposed GPU utilizes a Single Instruction, Multiple Threads (SIMT)
architecture with minimal extensions to the RISC-V instruction set. The authors, Fares Elsabbagh et
al., delve into the implementation details and runtime considerations of this design. Notably, it
leverages POCL, an open-source OpenCL implementation that offers flexible compilation using the
LLVM compiler.
One of the primary bottlenecks in this context is memory sharing between the CPU and GPU. The
paper explores various solutions, including the fine-grained Shared Virtual Memory (SVM) model
introduced in OpenCL 2.0. Additionally, the fused architecture of CPU and GPU on the same SoC
enables features like cache sharing, which can significantly improve performance. The work of
Keitaro Oka on compressed caches for GPUs is also discussed, highlighting how this approach
mitigates the negative effects of L1 cache misses and optimizes data utilization.
Furthermore, the paper examines techniques to enhance L1 data cache efficiency among multiple

JOURNAL OF BASIC SCIENCE AND ENGINEERING

1037

Vol. 21, No. 1, (2024)
ISSN: 1005-0930

streaming processors. Jianfei Wang et al. propose extending cache interfaces by incorporating
general-purpose hardware caching into the on-chip memory hierarchy of the GPU. This includes the
L1.5D cache mechanism, which improves efficiency by duplicating private L1D caches.
Finally, the paper references Yibin Tang and Ying Wang's work on the Mv-net neural network
architecture, designed specifically for multicore SoCs. This architecture offers elasticity and
contention-aware self-scheduling capabilities to enhance performance in mobile computing
systems.In conclusion, this paper explores various approaches for addressing challenges in
heterogeneous SoCs with GPUs, paving the way for more efficient and powerful embedded systems.

In recent developments of RISC-V instruction set, the Elsabbagh F, Tine B, Roshan P, et al
[2] of Vortex, Propose a new GPU architecture with extended risk v instruction set. The proposed
vertex Will allow software developers to run complete open CL Open based Software. In this paper
the presented details of vertex GPU architecture and microarchitecture as well as complete open CL
softwares stack.

Steepest descent local search (SDLS) algorithm's role in memetic algorithms to address low
autocorrelation binary sequences (LABS) pitfalls with traditional mathematical models. the Russek
P, Jamro E, Dąbrowska-Boruch A, and Wiatr K [5] try to examine four architectures that address
these challenges LABS in loop pipelining, Loop reordering, Dynamic reconfiguration OpenCL
platform is used for FPGA development.

The research paper introduces an innovative GPU-based parallel tabu search algorithm

(GPTS) for hardware/software co-design, addressing the challenge of balancing solution quality and
time in large-scale problems by Hou N, He F, Zhou Y, Chen Y. [6]. GPTS leverages a single GPU
kernel for compacting neighborhood and a kernel fusion strategy to reduce GPU global memory
accesses, enhancing efficiency. A specifically tailored optimized transfer strategy is proposed to
minimize transfer overhead between CPU and GPU, for tabu evaluation on GPUs.

The Oka K, Kawakami S, Tanimoto T, Ono T, Inoue K [8] in this article tackles L1 cache
conflicts in GPUs, a major performance hurdle due to limited cache capacity shared by numerous
cores. Their solution involves a novel compressed cache architecture that exploits both within-line
and between-line data similarity, specifically designed for shared L1 caches in GPUs. This sets it
apart from prior work and achieves an impressive 11% performance improvement over existing GPU
compression caches. Experiments confirm the effectiveness of this enhanced cache strategy. By
reducing cache misses, it significantly boosts GPU performance, which is critical for GPU-reliant
applications. Overall, this research offers valuable insights for optimizing GPU cache architectures
and presents a promising approach to mitigate L1 cache conflict woes in multi-core processors.

The MV-Net architecture presented by Tang Y, Wang Y, Huawei LI, Xiaowei LI [15] work
constitutes a significant advancement for deep neural networks, particularly in the context of mobile
computing. The core innovation lies in the dynamic reconfiguration of network propagation paths.
This approach allows MV-Net to achieve a commendable trade-off between computational efficiency

JOURNAL OF BASIC SCIENCE AND ENGINEERING

1038

Vol. 21, No. 1, (2024)
ISSN: 1005-0930

and prediction accuracy, paving the way for real-time deep learning on mobile devices. Notably,
MV-Net prioritizes performance flexibility by adapting to variations in QoS constraints, output
accuracy requirements, and resource contention within multi-tasking environments. This dynamic
adaptation ensures consistent, guaranteed QoS, a critical feature for mobile applications with
fluctuating performance demands

Wang J, Jiang L, Ke J, Liang X, and Jing N [16] presents a compelling approach to cache
architecture with the introduction of the L1.5D cache, particularly for systems utilizing multiple
streaming multiprocessors (SMs). The paper proposes replacing private L1D caches with a shared
L1.5D cache to tackle data duplication and achieve a larger effective cache size per SM, aiming to
enhance overall performance. This paper introduces a novel concept: shareable data aware cache
management. This strategy prioritizes retaining valuable, shareable data within the cache by
leveraging a lightweight PC-based history table for cache replacement decisions. This approach has
the potential to significantly improve performance by mitigating early eviction of crucial data.

The energy consumption in heterogeneous CPU-GPU architectures, particularly within the

framework of parallel evolutionary algorithms, is very high. Escobar JJ, Ortega J, Díaz AF, González
J, and Damas M [18] proposed a promising approach to optimizing the algorithms. The Multi-
Objective Workload Distribution aims to achieve a balance between energy savings and runtime
performance, a crucial aspect for efficient parallel computing. The Targeted Application Area is
particularly beneficial for bioinformatics, data mining, and other fields with similar parallel
computing profiles. The paper delves into both Static Power Management (SPM) and Dynamic
Power Management (DPM) techniques within clusters, demonstrating a thorough understanding of
energy optimization strategies in heterogeneous systems. The inclusion of expressions for calculating
CPU and GPU idle power based on workload allocation provides valuable insights.

Sadrosadati M, Ehsani SB, Falahati H, et al[26] makes significant contributions in the realm

of power management for GPU execution units through the introduction of ITAP (Idle-Time-Aware
Power Management). The ITAP tackles the shortcomings of prior proposals. which combines power-
gating and multiple levels of voltage scaling to reduce static power consumption effectively. It
proposes combining ITAP with idleness defragmentation techniques such as pattern-aware
scheduling to further enhance static energy savings. The research explores various idle power
management modes, implements prediction schemes, and provides accurate estimations of idle
periods' lengths.

 A new architecture for improving the efficiency of single-instruction multiple-data (SIMD)
instructions in multicore processors called SIMD Stealing is introduced by Huang L, Lü Y, Ma S,
Xiao N, Wang Z [27]. In single-threaded applications, only one core's SIMD engine is active, limiting
performance gains even with multiple cores available. Modifying hardware to transfer SIMD
workloads between cores and compiler extensions to identify opportunities for workload sharing
improved the performance metric.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

1039

Vol. 21, No. 1, (2024)
ISSN: 1005-0930

 This paper Liu W, Ma S, Huang L, Wang Z. [37] proposes a novel approach for designing
memory access scheduling on the Network-on-Chip (NoC) side of General-Purpose Graphics
Processing Units (GPGPUs) to improve energy efficiency. The proposed scheme targets optimizing
memory access patterns within the NoC to reduce energy consumption while maintaining
performance. The effectiveness of the scheme is evaluated based on energy efficiency, performance,
scalability, and OS support. The research demonstrates the feasibility of the approach and identifies
areas for future work in real-world evaluation, adaptability, and heterogeneous architectures.

A. Operating system context (GPU resource management):

In this paper Yang SW, Qiu ZW, Chen YS [7] addresses the performance bottleneck in GPU
applications due to data movement from limited physical memory. GPUs are commonly used for
high-performance applications, but data swapping significantly impacts performance during memory
oversubscription. The proposed solution includes memory contention-aware priority assignment and
virtual memory management. The approach aims to reduce performance degradation caused by
memory contention.

The Carvalho P, Cruz R, Drummond LMA, et al [10] presents a new approach to analyzing

benchmark suites like SHOC, Parboil, and Rodinia. Moving beyond traditional methods is crucial in
the rapidly evolving field of GPU computing bydelving into factors like computation types, memory
interactions, and hardware utilization . Identifying opportunities for concurrent kernel execution is a
significant step toward enhancing GPU efficiency. Simultaneous execution of kernels has the
potential to unlock greater performance by better utilizing the hardware's processing resources.
Understanding how different kernels interact when running concurrently can indeed pave the way
for significant improvements in GPU performance and scalability. Optimized scheduling and
resource allocation strategies informed by your research have the potential to drive advancements in
GPU technology and its applications across various domains.

Kang JH, Lim JB, and Yu HC of the paper [11] address the challenge of GPU resource
shortages in virtualized environments by introducing a novel partial migration technique for GPGPU
tasks. This technique enables tasks to be migrated to servers with available GPU resources, thereby
reducing the wait time for virtual machines (VMs) to access the GPU. Such a proactive strategy
prevents resource shortages from occurring, ensuring uninterrupted operation. This work presents a
compelling solution for managing GPU resources in virtualized environments. Through proactive
task migration and minimal disruption, the proposed method effectively addresses GPU scarcity
while delivering substantial performance gains

The Kiran Kumar M, Abdel-Majeed MR, Annavaram M [13] proposes a method for
efficiently running single-GPU code on multiple GPUs. Current code often struggles due to data
partitioning and remote memory access. The authors [13] propose a data-aware scheduler that assigns
work to GPUs with the most-used data. They track data access patterns and optimize scheduling

JOURNAL OF BASIC SCIENCE AND ENGINEERING

1040

Vol. 21, No. 1, (2024)
ISSN: 1005-0930

based on the repetitive nature of workloads. Additionally, a mechanism migrates data between GPUs
to minimize remote access.

The Efficient GPU Cloudification Architecture proposed by Gutiérrez-Aguado J, Claver JM,
and Peña-Ortiz R [14] as a transparent and efficient approach to GPU integration in cloud
environments. The focus on location transparency is particularly noteworthy, as it fosters flexibility
in resource management while mitigating potential user over-utilization. Furthermore, the
automation of configuration tasks, encompassing both VM setup and distributed component
deployment, significantly improves operational efficiency. The dedicated GPU network is another
strong element, guaranteeing optimal performance by isolating GPU data traffic from general VM
and management traffic. This work appears to effectively address critical GPU cloudification
challenges, presenting substantial advantages for both cloud providers and users alike.

The LLOS Warp Scheduling Policy presented in the paper Do CT, Choi HJ, Chung SW, Kim
CH [20],(long-latency operation-based scheduler) addresses the inefficiencies of conventional warp
schedulers in GPUs often encountered. The inefficiencies when managing long-latency operations
such as global memory loads and stores. LLOS is designed to tackle this issue and enhance overall
GPU performance. Performance Gains: The paper showcases, via experimental evidence, that LLOS
delivers an average performance boost of 24.4% compared to existing schedulers. This improvement
is achieved by LLOS Warp Partitioning divides warps into distinct pools based on their instruction
characteristics. Warps unaffected by long-latency operations can proceed while others wait,
effectively masking latencies by overlapping execution with other warps.

The Spanning-Tree based algorithm for extracting parallelism in stream-based computing.
The Wang G, Wada K, and Yamagiwa S [21] leverage a spanning tree to represent the workflow and
automatically determine the execution order for multiple programs running on a distributed system.
Map processing units (kernels) to nodes and data streams (I/O) to edges in a spanning tree. Nodes at
the same depth can run in parallel if their parent nodes are done (spatial parallelism). The algorithm
can be slowed down by waiting for loops to complete. This is addressed through communication
pattern optimization during tree generation. Unequal execution times across kernels can impact
performance. Load balancing is incorporated to mitigate this issue.

Troodon is a machine learning-based approach for efficient task scheduling in heterogeneous

CPU-GPU systems, leading to significant performance improvements introduced by Khalid YN,
Aleem M, Ahmed U, Islam MA, Iqbal MA [24]. While processing CPU and GPUs in Traditional
scheduling methods might not consider factors like suitability of a task, leading to performance
issues. Troodon addresses these challenges by using a machine learning model to classify tasks and
a speedup predictor to estimate performance improvement. Troodon leverages an existing scheduling
mechanism (E-OSched) for balanced task allocation across CPU and GPU.

In essence, the Kohl N, Hötzer J, Schornbaum F, et al[25] introduces a highly efficient and scalable
checkpointing solution for large-scale simulations, boosting their reliability through fault tolerance.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

1041

Vol. 21, No. 1, (2024)
ISSN: 1005-0930

 Large-Scale Simulations: This novel scheme creates and recovers snapshots of massive
simulations (billions of cells and floating-point values).

 Efficiency and Scalability: Checkpoint creation is remarkably fast (seconds) and scales
well with system size (up to 260,000 processes). The scheme effectively handles
simulations with billions of computational elements.

 Fault Tolerance: Recovery algorithms leverage ULFM MPI, enabling runtime recovery
from failures and improving simulation reliability.
This method significantly improves the reliability of large-scale simulations by enabling

recovery from failures without slowing them down much. (This is a reduction of about 50% from the
original passage).

The Navarro A, Corbera F, Rodriguez A, Vilches A, and Asenjo R [29] contributions enhance the
state-of-the-art in efficiently executing parallel loops on heterogeneous CPU-GPU chips, offering
novel LogFit is a new strategy for dynamically partitioning (dividing) parallel processing tasks
(loops) for heterogeneous systems. The LogFit provides Dynamic chunk size for GPU(amount of
work assigned to the GPU at runtime), Adjusts the number of loop iterations assigned to CPU cores
to avoid imbalances and a code structure for implementing these techniques in parallel loops reduces
the programmers efforts. Comparative analysis with existing methodologies demonstrates superior
performance and energy savings of up to 57% and 31%, respectively.

 Cruz RAQ, Bentes C, Breder B, et al. [34], proposed an Optimisation approach to dynamic
reorder the kernel invocation focusing on maximizing resource utilization because the scheduling
decisions are taken at the runtime by the hardware itself. so the earring method improved turnaround
time and maximum resource utilisation. They use a dynamic programming approach to model the
kernel assignments to hardware resources. They evaluated their approach on modern GPUs only.

This paper by Zhao Y, Chen L, Xie G, Zhao J, Ding J. [35] proposes a novel approach to
scheduling dependent tasks in physical system simulations. They implement a cellular genetic
algorithm (CGA) on a GPU to address scalability limitations of traditional GAs. The GPU-based
CGA leverages parallel processing for faster execution and maintains solution quality.The high
intensity computational tasks of mechatronics system simulation and modelling using direct acyclic
graph (DAG). For scheduling this DAGs cellular genetic gives better results for physical system
simulation programs the simulation of genetic algorithms extremely time consuming,.This research
validates the feasibility of GPU-based algorithms for scheduling in simulations, demonstrating
significant performance improvements and paving the way for further exploration in this area.

Li K. [36] In this paperproposes a scheduling algorithm for parallel tasks with energy and

time constraints on multiple manycore processors in a cloud environment. The algorithm aims to

JOURNAL OF BASIC SCIENCE AND ENGINEERING

1042

Vol. 21, No. 1, (2024)
ISSN: 1005-0930

minimize energy consumption while meeting deadlines by considering both energy consumption and
time constraints. It utilizes various techniques including post-determination, pre-determination,
energy-aware scheduling, and deadline-constrained scheduling. The effectiveness of the algorithm is
evaluated based on energy consumption, performance, scalability, and OS support. The research
demonstrates the feasibility of the approach and identifies areas for future work in dynamic energy
management, fault tolerance, and multi-objective optimization.

Reuther A, Byun C, Arcand W, et al.[39] In this article they discuss an analysis model for job
schedulers which run on supercomputers and big data systems. Based on the scheduler latency the
defined performance characteristics and id3 article model for designing and measuring a
benchmarking system.The proposed scheduling system focuses on three main areas: task scheduling,
resource management, and workflow orchestration. Task scheduling involves allocating computing
resources and prioritizing job execution based on various factors like dependencies, resource needs,
and deadlines. The system utilizes algorithms, optimization techniques, or even machine learning to
make informed scheduling decisions. Resource management ensures efficient utilization and fair
allocation of resources (CPU cores, memory, storage, network bandwidth) among competing tasks.
This may involve mechanisms for provisioning resources, dynamically scaling them based on
workload, and monitoring performance to adapt to changing conditions. Finally, workflow
orchestration, relevant for Big Data applications, coordinates the execution of multi-stage data
processing pipelines. The system provides tools for defining, scheduling, and monitoring complex
workflows with interconnected tasks and data dependencies.

Kim H, Patel P, Wang S, (Raj) Rajkumar R. [40] The proposed server-based approach to

manage GPU. The GPU server handles the request from other tasks time bound service to the
requested tasks and also it has a suspension mechanism to save GPU and CPU cycles. This model
also addresses the real time synchronisation-based GPU management. This model is implemented
and tested on a real embedded platform.

C. Beyond OpenCL & CUDA: Novel Programming Models for CPU-GPU Co-design in
Embedded Systems(framework):

The traditional component-based embedded systems development Struggles with integrating
GPU into embedded systems due to Platform specific requirements of that particular component.
This problem was addressed by Campeanu G, Carlson J, and Sentilles S. [1] Introducing flexible
components GPUs for processing. Flexible component is a Code block written in open CL To
generate platform dependent code for CPU and GPUs. this allows the system developers to choose
System level requirements and reduces The efforts needed to handle memory allocation and Data
transfer between CPU and GPU. It improves the design flexibility and Automatic communication
between CPU and GPU.

The embedded system requires CPU GPU and some specialized accelerators; the existing
programming models Cuda andOpen CL are difficult to manage the hardware components and

JOURNAL OF BASIC SCIENCE AND ENGINEERING

1043

Vol. 21, No. 1, (2024)
ISSN: 1005-0930

scheduling. To overcome the shortfall Raca V, Mehofer E. [3] introduced ClusterCl Framework.
Cluster CL employes varying capabilities requires strategies for partitioning data and handling
communication to distribute the load across the various devices such as 1.Automatic Work
Partitioning to Allow programmers to choose a strategy, sot that framework handles partitioning and
adaptation.. 2. Device-Aware Dispatching Minimizes communication overhead by sending tasks to
specific devices. 3. Performance and Energy-aware Distribution 4. Cluster Node Execution
Coordination Handles device failures and errors. for Steering for Single/Multi-Kernel Applications:

The existing Sparse Matrix-Vector Multiplication (SpMV) on computing platforms that

combine CPUs and GPUs are limited to single CPU and GPU. Benatia A, Ji W, Wang Y, Shi F. [4]
solution for workload partitioning and mapping on heterogeneous CPU-GPU systems with
potentially more complex configurations (multiple CPUs and/or GPUs). It leverages machine
learning models to predict SpMV performance for different submatrices under various sparse formats
on each processing unit such as Structure-based, Graph-based and Cost-based partitioning.

In this paper, Nozal R, Bosque JL, and Beivide. R[9] introduces EngineCL, a novel OpenCL-
based runtime system designed to streamline the co-execution of large, data-parallel kernels across
all devices within a heterogeneous computing system. EngineCL takes care of the heavy lifting,
including device management, memory allocation on disparate memory spaces, and workload
scheduling. This layered API offers a user-friendly experience for developers while still allowing for
performance optimization. The capabilities of EngineCL have been validated on two compute nodes,
each containing a mix of six devices with various architectures. This successful validation
demonstrates EngineCL's effectiveness in handling the complexities of heterogeneous systems.

This research by Beheshti Roui M, Shekofteh SK, Noori H, and Harati A.[12]proposes a
revolutionary framework for GPU stream scheduling. It predicts the best stream configuration for
two data streams, eliminating exhaustive testing and boosting efficiency. The framework defines a
performance model and scheduler: the model estimates execution time for concurrent program
sections, and the scheduler uses these estimates to find the optimal stream set up for peak
performance. Remarkably, even with a 33% error in the model, the scheduler achieves 100%
precision in predicting the best stream sets. This not only ensures reliability but also saves significant
time by avoiding testing all possibilities, making stream scheduling practical for real-world
applications.
A novel machine-learning approach for dynamic policy selection for GPU warp scheduling was
introduced by Chiou LY, Yang TH, Syu JT, Chang CP, and Chang YJ [17]. Unlike prior studies that
relied on static analysis, this approach injects adaptability and intelligence into policy selection,
effectively addressing the challenge of diverse application requirements on GPUs.The proposed
approach's ability to maintain performance comparable to the best static policy across various
applications. This finding highlights the potential of machine learning for intelligent policy selection
in GPU warp scheduling, ensuring near-optimal performance regardless of the specific application
characteristics.

In this paper, Liao SW, Kuang SY, Kao CL, Tu CH. [22] propose a new framework for

JOURNAL OF BASIC SCIENCE AND ENGINEERING

1044

Vol. 21, No. 1, (2024)
ISSN: 1005-0930

Halide, a programming model for mixed CPU-GPU systems. The framework tackles challenges like
data movement and workload balancing, allowing programmers to better leverage both processors.
It achieves significant performance gains by optimizing CPU code and minimizing data copies. The
paper analyzes two image processing programs using the framework, demonstrating its effectiveness
in utilizing both CPU and GPU for faster execution. Overall, this research offers a valuable tool for
optimizing programs on heterogeneous computing systems.

An extension to OmpSs, a parallel programming framework, to simplify development for
multi-unit systems (CPUs and GPUs) was proposed by Pérez B, Stafford E, Bosque JL, et al [23].
OmpSs allows parallel programming but struggles with running a single program on multiple devices
at once. The extension tackles this by enabling concurrent execution of a single program across
devices in a single node. It solves data distribution and load balancing challenges for these
heterogeneous systems. An Auto-Tune feature dynamically optimizes performance based on
hardware and applications. This extension simplifies heterogeneous system programming while
maximizing performance and resource utilization.

This Hartmann C, Margull U [28] introduces GPUart, a software framework enabling real-
time scheduling for GPUs in embedded systems. Traditional GPUs lack real-time capabilities like
task preemption, hindering their use in critical areas like autonomous vehicles that require guaranteed
timely processing. GPUart archives it by

 Software-only approach: Achieves preemption without hardware or driver modifications.
 Fixed preemption points: Allows task interruption at specific points within thread blocks.
 Portable resource management: Enables scheduling tasks on GPUs using gang scheduling

algorithms.
 Scheduling policies: Supports Gang-EDF and Gang-FTP for task scheduling.

This added the 0.28% minimal memory overhead, reduced the worst-case response time by 221 times
and achieved. guaranteed task deadlines are met.

The presented KOCL Framework implements the runtime Framework for operating system kernel
which in turn communicates the open CL Framework in the application layer introduced by Tu C-H,
Lin T-S. [30]. The framework, designed to facilitate general-purpose in-kernel accelerations using
different types of processors. This framework provides high-level programming interfaces for Linux
kernel module developers to offload compute-intensive tasks on various hardware accelerators
without managing platform-specific computing and memory resources.

 simplifies programming efforts by offering platform management and memory models that
systematically manage heterogeneous hardware resources. This simplification enables
developers to offload tasks onto different hardware accelerators with ease, enhancing the
performance of user-space applications.

 The framework supports one- and zero-copy data-buffering schemes, ensuring high
performance on platforms with diverse memory architectures. This feature allows offloaded
tasks to deliver optimal performance regardless of the underlying hardware
setup.Configurations.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

1045

Vol. 21, No. 1, (2024)
ISSN: 1005-0930

 This brings Mini security overheads that it calls between the openCL and OS kernel. Very few
applications require kernel (OS) execution. Mainly network data applications and data drives with
encrypted data. the encryption and decryption algorithms can be executed on the GPUs in a better
way, So device drivers and Network Stack of the operating system should provide a means to use
GPU for program flow requiring higher performance. Currently GPGPU systems utilise the job
submission to their schedule as only from the application layer, but the discrete jobs submitted by
kernel components required higher priority and software preemption.

 A workload-aware GPU multiprocessing framework designed for modern GPUs, enabling
concurrent kernels from different processes to share GPU devices efficiently called Slate was
introduced by Allen T, Feng X, and Ge R [31]. Slate aims to address the issue of inefficient GPU
utilization by implementing advanced kernel scheduling and resource sharing techniques, promoting
workload-aware runtime design for better performance. Slate offers an open-source alternative to
NVIDIA MPS, providing a cost-effective solution for GPU multiprocessing research and enhancing
GPU utilization in real-world applications.

 Selects kernels at runtime that have complementary resource needs to minimize interference.
 Dynamically adjusts kernel sizes for efficient resource sharing and reclaiming.
 Manages data transfer and synchronization overhead.

UHCL-darknet, Liao L, Li K, Li K, Yang C, Tian Q. [38] proposed in this paper, is an OpenCL-
based deep neural network framework designed for heterogeneous computing clusters. It aims to
efficiently run deep learning models across various hardware architectures found in these clusters.
The evaluation focuses on scalability, performance, resource management, and OS support. UHCL-
darknet utilizes parallelization, task scheduling, and memory management techniques to optimize
DNN execution. The paper identifies areas for further research, including optimization for diverse
hardware configurations, dynamic resource allocation, and improving energy efficiency in
heterogeneous clusters.

Yu C, Bai Y, Yang H, et al. [41], presented SMGuard managing GPU resources across multiple co-
location applications. and also the proposed CapSM, a capacity based GPU resource model which
provides fine grained granularity among GPU applications. SMGuard supports evicting red blocks
to release the resources and remapping into uncompleted thread blocks and also avoids relaunch of
Kernels. This also reduces the necessity of preemption of kernels.

Conclusion: Opportunities for Job Scheduling in Fused CPU-GPU Systems
This paper highlights the limitations of existing job scheduling algorithms for heterogeneous systems
with tightly-coupled CPU-GPU architectures. While numerous frameworks and schedulers cater to
multi-core systems with discrete GPUs, there's a gap in solutions designed for fused CPU-GPU SoCs
with shared memory and caches.
This work proposes key characteristics and requirements for effective job scheduling in such systems.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

1046

Vol. 21, No. 1, (2024)
ISSN: 1005-0930

We argue against solely GPU-based execution, especially when the CPU remains idle. A lightweight
scheduling algorithm is needed to leverage both CPU and GPU capabilities, considering the CPU's
higher clock speed and potential benefits.
The tight integration of CPU and GPU in fused SoCs opens doors for co-execution of applications.
While existing work by Kali explores machine learning for job scheduling, it requires modification
to dynamically accept jobs and optimize resource utilization.
Real-time embedded systems typically rely on priority and preemption algorithms. However,
hardware preemption in GPUs often incurs high overhead. This work suggests exploring software-
based preemption by introducing scheduling points during program execution, either at compile time
or job submission. OpenCL applications, while designed for portability across CPU and GPU, often
underperform compared to CPU-specific implementations. Modern CPUs equipped with SIMD units
can achieve high throughput for certain applications. Developing applications to leverage both CPU
and GPU SIMD capabilities can lead to better performance and resource utilization. Additionally,
the scheduler should consider data size when making execution decisions. Smaller datasets may
benefit more from CPU execution due to memory transfer overhead on the GPU.
The presented KOCL framework demonstrates a runtime framework within the operating system
kernel that interacts with the OpenCL framework in the application layer. This offers minimal
security overhead compared to traditional OS-to-OpenCL communication. While few applications
require in-kernel execution, network data processing and encrypted data drives are examples where
GPUs can excel for cryptographic algorithms. Operating system device drivers and network stacks
should explore enabling GPU utilization for performance-critical tasks.
Currently, GPGPU systems primarily rely on application-layer job submissions for scheduling.
However, discrete jobs submitted by kernel components often require higher priority and software
preemption capabilities.
In conclusion, this work identifies a shift in focus within the GPGPU field, with significant
advancements happening in software frameworks like OpenCL being implemented across diverse
hardware platforms. Limited research has explored the operating system component, as evidenced
by frameworks like KOCL. While substantial progress has been made in hardware through fused
architectures, shared virtual memory, and shared caches, software preemption techniques are proving
successful in commercial applications like voice and facial recognition, medical image processing,
and autonomous vehicle control. This paper highlights the need for further research in job scheduling
algorithms specifically designed to exploit the unique capabilities and constraints of fused CPU-GPU
SoCs.

REFERENCES:

1. Gabriel Campeanu, Jan Carlson, Severine Sentilles, Component-based ´ Development of
Embedded Systems with GPUs, The Journal of Systems & Software (2019), doi:
https://doi.org/10.1016/j.jss.2019.110488

JOURNAL OF BASIC SCIENCE AND ENGINEERING

1047

Vol. 21, No. 1, (2024)
ISSN: 1005-0930

2. Elsabbagh F, Tine B, Roshan P, et al, Vortex: OpenCL Compatible RISC-V GPGPU, arXiv
(2020)

3. Valon Raca1 · Eduard Mehofer cluster CL: comprehensive support for multi-kernel
data-parallel applications in heterogeneous asymmetric clusters, The Journal of
Supercomputing, (2020), https://doi.org/10.1007/s11227-020-03234-w.

4. Akrem Benatia , Weixing Ji , Yizhuo Wang and Feng Shi Sparse matrix partitioning for
optimizing SpMV on CPU-GPU, heterogeneous platforms, The International Journal of High
Performance Computing Applications,(2019), 1–15

5. Paweł Russek, Ernest Jamro, Agnieszka D˛abrowska- Boruch and Kazimierz Wiatr, A study
of the loops control for reconfigurable computing with OpenCL in the LABS local search
problem, The International Journal of High-Performance Computing Applications, (2020),
1–12

6. Hou N, He F, Zhou Y, Chen Y An efficient GPU-based parallel tabu search algorithm for
hardware/software co-design, Front. Comput. Sci., 2020, 14(5): 145316.

7. Yang SW, Qiu ZW, Chen YS, GPU swap-aware scheduler: Virtual memory management for
GPU applications, ACM, 2020, https://doi.org/10.1145/3341105.3373866

8. Oka K, Kawakami S, Tanimoto T, Ono T, Inoue K, Enhancing a manycore-oriented
compressed cache for GPGPU, ACM, 2020, MORC,
https://doi.org/10.1145/3368474.3368491

9. Raúl Nozal ∗, Jose Luis Bosque, Ramon Beivide, EngineCL: Usability and Performance in
Heterogeneous Computing, Future Generation Computer Systems, Future Generation
Computer Systems 107 (2020) 522–537

10. Carvalho P, Cruz R, Drummond LMA, et al Kernel concurrency opportunities based on GPU
benchmarks characterization, Cluster Computing, https://doi.org/10.1007/s10586-018-
02901.

11. Kang JH, Lim JB, Yu HC Partial migration technique for GPGPU tasks to Prevent GPU
Memory Starvation in RPC-based GPU Virtualization, Softw: Pract Exper. 2020;1–25.

12. Beheshti Roui M, Shekofteh SK, Noori H, Harati A Efficient Scheduling of Streams on
GPGPUs, The Journal of Supercomputing, https://doi.org/10.1007/s11227-020-03209-x

13. M. Kiran Kumar, et al., Efficient automatic parallelization of a single GPU program for a
multiple GPU system, Integration, the VLSI Journal, (2018)
https://doi.org/10.1016/j.vlsi.2018.12.006

14. Gutiérrez-Aguado J, Claver JM, Peña-Ortiz R, Toward a transparent and efficient GPU
cloudification architecture, The Journal of Supercomputing https://doi.org/10.1007/s11227-
018-2720-z

15. Tang Y, Wang Y, Huawei LI, Xiaowei LI MV-Net: Toward real-time deep learning on mobile
GPGPU systems, ACM Journal on Emerging Technologies in Computing Systems, Vol. 15,
No. 4, Article 35, October 2019.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

1048

Vol. 21, No. 1, (2024)
ISSN: 1005-0930

16. Wang J, Jiang L, Ke J, Liang X, Jing N A sharing-aware L1.5D cache for data reuse in
GPGPUs, IEEJ Transactions on Electrical and Electronic Engineering, IEEJ Trans 2019; 14:
862–869

17. Chiou LY, Yang TH, Syu JT, Chang CP, Chang YJ Intelligent Policy Selection for GPU
Warp Scheduler, 2019 IEEE International Conference on Artificial Intelligence Circuits and
Systems (AICAS)

18. Escobar JJ, Ortega J, Díaz AF, González J, Damas M, Energy-aware load balancing of
parallel evolutionary algorithms with heavy fitness functions in heterogeneous CPU-GPU
architectures, Concurrency Computat Pract Exper. 2018; e4688.

19. M. Khairy, A.G. Wassal and M. Zahran, A survey of architectural approaches for improving
GPGPU performance, programmability and heterogeneity, Journal of Parallel and Distributed
Computing (2019), https://doi.org/10.1016/j.jpdc.2018.11.012

20. Do CT, Choi HJ, Chung SW, Kim CH A novel warp scheduling scheme considering long-
latency operations for high-performance GPUs, The Journal of Supercomputing
https://doi.org/10.1007/s11227-019-03091-2

21. Wang G, Wada K, Yamagiwa S, Optimization in the parallelism extraction algorithm with
spanning tree on a multi‐GPU environment, IEEJ Transactions on Electrical and Electronic
Engineering Ieej Trans 2019; 14: 862–869

22. Liao SW, Kuang SY, Kao CL, Tu CH, A Halide-based Synergistic Computing Framework
for Heterogeneous Systems, 47th International Conference on Parallel Processing, August
13–16, 2018, Eugene, OR, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3225058.3225107

23. Pérez B, Stafford E, Bosque JL, et al, Auto-tuned OpenCL kernel co-execution in OmpSs for
heterogeneous systems, 0743-7315, 2018 Elsevier,
https://doi.org/10.1016/j.jpdc.2018.11.001

24. Khalid YN, Aleem M, Ahmed U, Islam MA, Iqbal MA, Troodon: A machine-learning based
load-balancing application scheduler for CPU–GPU system, Journal of Parallel and
Distributed Computing 132 (2019) 79–94

25. Kohl N, Hötzer J, Schornbaum F, et al, A scalable and extensible checkpointing scheme for
massively parallel simulations, The International Journal of High-Performance Computing
Applications, 2019, Vol. 33(4) 571–589

26. Sadrosadati M, Ehsani SB, Falahati H, et al ITAP: Idle-Time-Aware Power Management for
GPU Execution Units, ACM Transactions on Architecture and Code Optimization, Vol. 16,
No. 1, Article 3, February 2019.

27. Huang L, Lü Y, Ma S, Xiao N, Wang Z, SIMD stealing: Architectural support for efficient
data parallel execution on multicores, Microprocessors and Microsystems 65 (2019) 136–147

28. Christoph Hartmann, Ulrich Margull, GPUart - An Application-Based Limited Preemptive
GPU Real-Time Scheduler for Embedded Systems, Journal of Systems Architecture (2018),
doi: https://doi.org/10.1016/j.sysarc.2018.10.005

JOURNAL OF BASIC SCIENCE AND ENGINEERING

1049

Vol. 21, No. 1, (2024)
ISSN: 1005-0930

29. Navarro A, Corbera F, Rodriguez A, Vilches A, Asenjo R, Heterogeneous parallel, for
Template for CPU–GPU Chips, Int J Parallel Prog,https://doi.org/10.1007/s10766-018-0555-
0

30. Tu C-H, Lin T-S, Augmenting Operating Systems with OpenCL Accelerators, ACM, Trans.
Des. Autom. Electron. Syst. 24, 3, Article 30 (March 2019), 29 pages.

31. Allen T, Feng X, Ge R Slate, Enabling workload-aware efficient multiprocessing for modern
GPGPUs, 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
DOI 10.1109/IPDPS.2019.00035

32. Nozal R, Perez B, Bosque JL, Beivide R, Load balancing in a heterogeneous world: CPU-
Xeon Phi co-execution of data-parallel kernels, J
Supercomput,https://doi.org/10.1007/s11227-018-2318-5

33. Amaris M, Lucarelli G, Mommessin C, Trystram D, Generic algorithms for scheduling
applications on heterogeneous platforms, Concurrency Computat Pract Exper. 2018;e4647.

34. Cruz RAQ, Bentes C, Breder B, et al, Maximizing the GPU resource usage by reordering
concurrent kernels submission, Concurrency Computat Pract Exper. 2018;e4409.

35. Zhao Y, Chen L, Xie G, Zhao J, Ding J, GPU implementation of a cellular genetic algorithm
for scheduling dependent tasks of physical system simulation programs, J Comb Optim DOI
10.1007/s10878-016-0007-y

36. K. Li, Scheduling parallel tasks with energy and time constraints on multiple manycore
processors in a cloud computing environment, Future Generation, Computer Systems (2017),
http://dx.doi.org/10.1016/j.future.2017.01.010

37. Liu W, Ma S, Huang L, Wang Z, The Design of NoC-Side Memory Access Scheduling for
Energy-Efficient GPGPUs, Int J Parallel Prog (2018) 46:722–735
https://doi.org/10.1007/s10766-017-0521-2

38. Liao L, Li K, Li K, Yang C, Tian Q, UHCL-darknet: An OpenCL-based deep neural network
framework for heterogeneous multi-/many-core clusters, J Sign Process Syst, DOI
10.1007/s11265-017-1283-1

39. A. Reuther, C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell, M. Jones, P.
Michaleas, A. Prout, A. Rosa, J. Kepner, Scalable system scheduling for HPC and big data,
J. Parallel Distrib. Comput. (2017), http://dx.doi.org/10.1016/j.jpdc.2017.06.009

40. Kim H, Patel P, Wang S, (Raj) Rajkumar R, A server-based approach for predictable GPU
access with improved analysis, Journal of Systems Architecture 88 (2018) 97–109.

41. Yu C, Bai Y, Yang H, et al SMGuard: A Flexible and Fine-Grained Resource Management
Framework for GPUs, DOI 10.1109/TPDS.2018.2848621, IEEE

