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 ABSTRACT 

This paper proposes a Multi Agent Deep-reinforcement learning algorithm for detecting 
cyber-attacks in distance relays. Distance relays are widely used in the power grid for 
protection against faults, but they are vulnerable to cyber-attacks due to their distributed 
nature. The proposed algorithm uses multiple agents to learn an optimal policy for detecting 
cyber-attacks in distance relays. Each agent is trained using a combination of deep 
reinforcement learning and supervised learning techniques. The agents are trained to identify 
attacks by observing the current state of the system and taking actions that optimize a reward 
function. The reward function is designed to maximize the detection accuracy of the agents 
while minimizing the false alarm rate. The algorithm is evaluated on a benchmark dataset of 
simulated cyber-attacks. The results show that the proposed algorithm outperforms existing 
approaches in terms of attack detection accuracy and false alarm rate.  
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1. INTRODUCTION 

 
Distance relays are designed to detect faults at a distance from the point at which the fault 

occurred, thus providing faster and better protection. Distance relays use the principle of 
impedance to detect faults. Impedance is the resistance an electric current encounter when 
traveling through a power system. When a fault occurs, the impedance between the fault point and 
the relay increases significantly, causing the relay to trip. Deep reinforcement learning and 
industrial control elements of networks are extensively employed for developing a unique reward 
and learning mechanism [1]-[15]. Deep reinforcement learning and industrial control elements of 
networks are extensively employed for developing a unique reward and learning mechanism. Deep 
reinforcement learning is also used to develop a technique for identifying abnormalities in 
industrial control systems. 
 

Several methods for identifying cyber-attacks in remote relays, the system that has been 
proposed which employs a large number of agents [16]-[18]. Diverse training techniques, 
including as deep reinforcement learning, supervised learning, and unsupervised learning, are 
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used to instruct each agent. Throughout their training, the agents engage in activities that are 
intended to optimize the value of a reward function in order to identify attacks. They also keep 
an eye on the system's condition. The incentive function was created to decrease the amount of 
false positives encountered by the agents and increase their detection accuracy. Analyzing the 
recommended strategy involves using a standard dataset made up of simulated cyber-attacks. 
Due to the advent of high-speed communication services, power grids have evolved from 
traditional transfer networks to cyber-physical platforms, posing significant security challenges 
[18]-[21]. Confidentiality, integrity, and availability are three key concepts for the security of 
smart grids presented by the National Institute of Standards and Technology (NIST). Multi-
Agent Distributed Deep Learning (MADDL) is the most advisable to counter cyberattacks in 
long- distance relays [22]-[24]. Using graph theory, transformation of the protective system with 
several distant relays into a decentralised multi-agent system can be achieved. Each agent is 
believed to have its deep neural network for detecting threats, and these agents are interconnected 
so that they may share voltage and current data. Train data is used to fine-tune the detection 
structures, which are then subjected to testing on a test dataset. The suggested technique has 
been shown to detect more than 99.88% of errors and cyberattacks in simulations. The distance 
relays in a power grid form a communication network, with each relay only linked to its 
immediate neighbours. High-quality performance in detecting cyber-attacks and easy 
compatibility with the expansion of power grids are achieved by MADDL algorithm despite its 
requirement for data for tweaking and a bit complicated implementation [23]-[24]. 

The goal of reinforcement learning (RL), a subfield of AI, is to programmatically learn the best 
possible decisions over time. It brings AI closer to social awareness by including time as a new 
component in the learning process. Several technological and industrial fields have taken up the 
RL challenge [25]. To determine which lines are most at risk of failing in the event of a coordinated 
multistage assault, this study offers an approach based on multi-agent deep reinforcement 
learning and prioritised experience replay. It creates a defense plan based on the ideal offensive 
line sequences and the defense capabilities. The suggested algorithm and the intended approach 
were shown to be successful in simulations, allowing the power system operator to more 
efficiently employ their limited defense resources and lessen the damage done by coordinated 
multistage assaults . 
Deep reinforcement learning as a technique for actively mitigating the consequences of a 
cyberattack on a portion of the DER units in the network. This might be done by figuring out the 
best settings for the control logic of a group of uncompromised DER units. This shift is being 
accomplished via standardizing the functionality of grid standards or international norms. These 
two strategies are both in use. DER, on the other hand, are distinct in that distribution utilities do 
not normally own or run them; as a result, they pose a new emergent threat vector for cyber-
physical assaults. Combining a deep feed forward neural network method and a reinforcement 
learning method based on Q-learning yields a new generation of network intrusion detection tools. 
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This technique integrates a network intrusion detection technique with a reinforcement learning 
technique based on Q-learning [26]-[27]. His urged Deep Q-Learning (DQL) paradigm provides a 
network framework with continuing auto-learning capability. By utilizing an automated process 
of trial-and-error, this feature enables the network environment to recognize various types of 
network intrusions while simultaneously improving its detection capabilities. The results of his 
experiments demonstrate that his suggested DQL is superior to existing methods of machine 
learning that are analogous in nature and works very well when it comes to identifying various 
types of intrusions. Using deep learning and reinforcement learning, the authors of the paper have 
created an artificial intelligence-based strategy for process control. This framework encourages 
the creation of control strategies that may gain knowledge via direct interaction with a plant's 
output.  In games and physical activities, human level control has been reached by fusing deep 
learning with reinforcement learning [28]-[31].  

In this paper, the method for evaluating cybersecurity that is intended to evaluate the cyber 
physical security of EPS using Deep-Reinforcement learning (DRL) is chosen and focuses on deep 
learning approach to detect malicious assaults on SCADA systems, by using Deep reinforcement 
learning, which acquires information from sensor data and identifies patterns indicative of defects, 
can be used to detect and diagnose errors in industrial processes. The formed methodology has 
been used to power grids with 6, 14, and 118 buses in three case studies. 

 
2. PROPOSED SYSTEM 
 

The well-known IEEE 14 bus structure is a benchmark power system that is put to use for the 
purpose of putting several power system analysis and optimization methods for the test. In the 
1970s, the Institute of Electrical and Electronics Engineers (IEEE) established it in order to 
investigate the effectiveness of several algorithms for power system analysis. These algorithms 
include load flow analysis, voltage stability analysis, and contingency analysis. 

The IEEE 14 bus system has 11 loads, five generators, and 14 buses altogether. The buses are 
linked together by means of twenty transmission cables and six transformers. 
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Fig.1: Electrical Line Diagram of IEEE 14 Bus System 
 

The generators are modeled as voltage-controlled buses, and the amplitude of the voltage as well 
as the phase angle are held constant at each generating bus. The loads are represented as constant-
power loads, which means that the amount of actual power and reactive power consumption at 
each load bus is held constant. In both academic and commercial settings, the IEEE 14 bus system 
has been put to extensive use for the purposes of testing and verifying various power system 
analysis and optimization techniques. It is a common system that is used as a benchmark for 
comparing the performance of various algorithms and methodologies, as well as for analyzing the 
influence that various parameters have on the dependability and stability of power systems. 

 
To implement the proposed work, required following facilities. 

MATLAB and Simulink: In order to use these programs, you will need to have MATLAB and 
Simulink already installed on your computer. MATLAB is a programming language that is used 
for mathematical calculation and data analysis. 

Deep learning toolbox: This may be done through the use of MATLAB's deep learning toolbox. 
To work with deep reinforcement learning, you will need to have this toolbox already installed on 
your system. 

Data: In order to train your deep reinforcement learning agent, you are going to need some data. 
This may use computer simulations, data collected from the actual world, or a mix of the two. 
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3. TRAINING THE SYSTEM WITH DATASET 
 

 

 

Fig.2: IEEE 14 BUS simulation model 

Fig. 2 states that the simulation model of IEEE 14 Bus protocol which is used to extract data for 
deep reinforcement learning algorithm. The necessary data for the IEEE 14-bus system is collected 
and entered in the model. This includes parameters such as bus voltages, line impedances, 



Vol. 21, No. 1, (2024) 
ISSN: 1005-0930 

 

JOURNAL OF BASIC SCIENCE AND ENGINEERING 

1211 
 
 

generator details, and load data. MATLAB variables were initialized with the collected data and 
stored in MATLAB arrays or structures for easy access. Analysis was carried out to determine the 
steady-state operating conditions of the system.  
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Table 1: Glimpse of dataset 
 

The Table 1 state that how data is collected for training and testing of deep-learning 
algorithm model in this we have 6 states (V1, V2, V3, C1, C2, C3) and two action which is 0 and 
1 ,such that 0 is for fault detection and 1 for cyber-attack detection. 

MATLAB simulation of IEEE 14 bus was carried out and then afterwards deep reinforcement 
learning algorithm was applied in which we have set initial values of Q table with zeros or random 
values and then set learning rate (alpha=0.9), gamma=0.75 etc. Thereafter, to set number of 
Episodes and for each Episodes, we have to reset environment to initial state. For each step in the 
episode, choose an using epsilon-greedy rule and perform the chosen action in the environment 
afterwards observe new state and reward. 

Now move towards updating the Q table using Q-learning Equation: 

Q (current_state,next_state)= Q(current_state,next_state)+alpha *TD 

Then transition to next state and if the episode is completed then End training process of deep 
reinforcement model. 

Learned final Q- table to exploit the environment and choose an action with the highest value for 
the current state is used to train the data. After training 70% of data as shown, we have to involve 
in Testing and Evaluation process with 30% of the data  

Final Q - table. 

8.0000 10.0000 

0.1835 10.0000 

-2.553 3.3025 

-0.1000 0.4128 

-0.1000 0 

0 0 

Table 2: Q-state dataset 
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Fig. 3: Training state 

 
4. RESULTS 

From the below confusion matrix tables there are 2 classes, class-0 represents the Not a cyber-
attack but fault and class-1 represents the Not a fault but cyber-attack. 
 
4.1 Testing 
 
A. Case Study for IEEE-14 Bus Train 
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Table 2 Confusion Matrix Table (Train) 
 

 

Table 3 Confusion Matrix Table (Test) 

 

 

From the above table 4 of TRAIN-SET of IEEE-14 BUS, it is observed that there are 413 faults 
are correctly classified out of 413 faults and we can also detect that there are 2186 cyber-attacks 
are correctly identified out of 2187 cyber-attacks 

 

From the above table 5 of TEST-SET of IEEE-14 BUS, it is observed that there are 833 faults 
are correctly classified out of 834 faults and we can detect that there are 4662 cyber-attacks are 
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correctly identified out of 4666 cyber-attacks. 

 

B. Case Study-III for IEEE-118 Bus Train 

 

 

Table 4 Confusion Matrix Table (Train) 

 

 

Table 5 Confusion Matrix Table (Test) 

 

From the above table 6 of TRAIN-SET of IEEE-118 BUS, it is observed that there are 389 faults 
are correctly classified out of 390 faults and we can also detect that there are 2289 cyber-attacks 
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are correctly identified out of 2289 cyber-attacks. 

From the above table 7 of TEST-SET of IEEE-118 BUS, it is observed that there are 842 faults 
are correctly classified out of 842 faults and we can also detect that there are 4812 cyber-attacks 
are correctly identified out of 4813 cyber-attacks. 

 

 
 

 

 
Fig.4: Regression value 
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Fig. 5: Training stage 

Above Fig.4 shows that Regression value is near to 1 so we can say that model is fit to particular 
target. In the given Fig. 5, validation check is 6 at epoch 162 which means model is struggling to 
generalize and make accurate prediction. High value of validation failure rate means model is 
overfitting. 

 

4.2 Performance Metrics Comparison Of IEEE-14 Bus vs Benchmark 

 
Fig. 6: IEEE-14 Bus Train-set 

The Fig. 6 represents the TRAIN-SET analysis of IEEE-14 BUS with the x-axis being the 
proposed and Benchmark algorithm and the y-axis will be accuracy, Specificity, and Sensitivity 
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values. The estimation accuracy in this scenario is roughly 99.96% for faults and cyberattacks It 
shows that the Proposed algorithm produces effective results when compared with Benchmark 
algorithm. 

 

 

 
Fig. 7: IEEE-14 Bus Test-Set 

The Fig. 7 represents the TEST-SET analysis of IEEE-14 BUS with the x-axis being the proposed 
and Benchmark algorithm and the y-axis will be accuracy, Specificity, and Sensitivity values. 
The estimation accuracy in this scenario is roughly 99.91% for faults and cyberattacks. It shows 
that the Proposed algorithm produces effective results when compared with Benchmark 
algorithm. 

 
Performance Metrics Comparison Of IEEE-118 Bus vs Benchmark 
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Fig. 8: IEEE-118 Bus Train-Set 

The Fig. 8 represents the TRAIN-SET analysis of IEEE-118 BUS with the x-axis being the 
proposed and Benchmark algorithm and the y-axis will be accuracy, Specificity, and Sensitivity 
values. The estimation accuracy in this scenario is roughly 99.96% for faults and cyberattacks It 
shows that Proposed algorithm produces effective results when compared with Benchmark 
algorithm. 

 
Fig. 9:  IEEE-118 Bus Test-Set 

The above Fig. 9 represents the TEST-SET analysis of IEEE-118 BUS with the x-axis being the 
proposed and Benchmark algorithm and the y-axis will be accuracy, Specificity, and Sensitivity 
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values. The estimation accuracy in this scenario is roughly 99.95% for faults and cyberattacks. It 
shows that proposed algorithm produces effective results when compared with Benchmark 
algorithm. 

5. CONCLUSION 

A Deep-reinforcement learning system is proposed in this article as a method for identifying 
cyber-attacks in distant relays. Due to the scattered nature of distance relays, which are 
extensively employed in the power grid to defend against failures, these relays are susceptible to 
cyberattacks despite their widespread usage. The algorithm that has been suggested makes use of 
a number of different agents in order to discover the most effective strategy for detecting 
cyberattacks in distant relays. Techniques like as deep reinforcement learning and supervised 
learning are used throughout each agent's education. The agents learn how to recognize assaults 
by monitoring the present state of the system and carrying out activities that aim to maximize the 
value of a reward function. The created technique has been used in case study, which include 
electricity grids with IEEE 14-bus bus configuration respectively. The incentive function was 
developed to optimize the detection accuracy of the agents while simultaneously reducing the 
number of false positives. The suggested approach is evaluated based on its performance on a 
standard dataset consisting of simulated cyberattacks. The findings demonstrate that the 
suggested algorithm performs better than the current methods in terms of the accuracy of attack 
detection as well as the rate of false alarms. It is anticipated that the method that has been 
suggested would be effective in improving the safety of the electric power grid's distance relays.  
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