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Abstract 

The integrity and authenticity of medical images are critical for accurate diagnosis and treatment 
planning. However, they are increasingly vulnerable to malicious attacks like tampering and 
manipulation. This work proposes a novel deep learning-based approach for medical image attack 
detection. The proposed model leverages Principal Component Analysis (PCA) as a feature 
extractor to capture essential information from the images while reducing dimensionality. 
Subsequently, two deep learning classifiers, Convolutional Neural Network (CNN) and Inception, 
are employed for classification. The model is trained and tested on a deepfake dataset, simulating 
potential attack scenarios in the medical domain. This approach aims to identify tampered medical 
images and enhance the security of medical image analysis. This research work investigates the 
effectiveness of the proposed model in distinguishing between genuine and manipulated medical 
images, paving the way for safeguarding the integrity of medical data and ensuring reliable 
decision-making in healthcare. 
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1. Introduction: 
 

Forgery attacks on medical images pose a significant threat to the integrity and reliability of 
diagnostic processes in healthcare. With the proliferation of digital imaging technologies, medical 
professionals increasingly rely on digital images for accurate diagnosis, treatment planning, and 
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monitoring of patients. However, the ease of digital manipulation coupled with the critical nature 
of medical imaging makes these images vulnerable to various forms of forgery [1]. Medical image 
forgery encompasses a wide range of malicious activities, including but not limited to, alteration 
of image content, insertion of artifacts or misleading information, and creation of entirely 
fabricated images. These forged images can lead to misdiagnosis, inappropriate treatment 
decisions, and compromised patient care. The implications of forgery attacks on medical images 
are profound, as they undermine the trustworthiness of medical data and jeopardize patient safety. 
Moreover, the potential for financial fraud, legal implications, and ethical concerns further 
exacerbate the gravity of this issue [2]. In recent years, researchers and practitioners in the field of 
medical imaging have been actively exploring techniques to detect and prevent forgery attacks. 
Various methods, including digital watermarking, cryptographic techniques, and deep learning-
based approaches, have been proposed to enhance the security and authenticity of medical images 
[3]. This paper aims to provide an overview of forgery attacks on medical images, examine existing 
detection and prevention methods, and highlight the challenges and future directions in this critical 
area of research [4][5]. 

Deep learning techniques are pivotal in detecting forgery in medical images due to their advanced 
capabilities and adaptability. Firstly, these techniques excel in automatic feature learning, where 
complex patterns and textures within images are discerned without explicit instruction [6]. This is 
particularly valuable in identifying subtle alterations or anomalies indicative of forgery. Secondly, 
deep learning models exhibit heightened sensitivity to minute variations in pixel intensities, 
shapes, and spatial relationships, enabling them to detect even the most inconspicuous 
manipulations that may elude traditional methods [7]. Furthermore, deep learning facilitates end-
to-end detection pipelines, streamlining the process by directly inputting raw images and 
outputting predictions of authenticity [8]. This efficiency is crucial, especially in clinical settings 
where rapid decision-making is imperative. Additionally, deep learning enables adversarial 
training to fortify models against sophisticated forgery attempts by exposing them to diverse 
manipulation techniques during training [9]. Moreover, techniques like transfer learning and multi-
modal fusion enhance forgery detection across different imaging modalities, leveraging 
knowledge gained from large-scale datasets and integrating features from various sources for more 
comprehensive assessments [10] [11]. Overall, deep learning plays a fundamental role in detecting 
forgery in medical images, offering robust and automated solutions to safeguard the integrity of 
diagnostic processes in healthcare. 

The increasing reliance on medical images in various stages of healthcare, from diagnosis and 
treatment planning to surgical guidance and research, necessitates robust measures to ensure their 
integrity and authenticity. Unfortunately, the rise of sophisticated image manipulation techniques 
poses a significant threat to the security of medical data. Malicious actors can tamper with medical 
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images, subtly altering crucial information, potentially leading to misdiagnosis, inappropriate 
treatment plans, and ultimately jeopardizing patient safety. 

The overall contribution of this work has been elucidated below: 

1. Data Preprocessing: The segments/slices within the 3D images that have been altered 
have been identified and categorized, with each segment assigned a label indicating 
whether it has been tampered with or remains unaltered. 

2. Feature Extraction: Principal Component Analysis (PCA) is utilized as a feature 
extraction technique. PCA is a dimensionality reduction method that identifies and retains 
the most informative components of the image data, discarding irrelevant information and 
noise. This helps to focus the model on the most salient features crucial for attack detection 
while improving computational efficiency. 

3. Classification: Two deep learning architectures, Convolutional Neural Networks (CNNs) 
and Inception, are employed for classification. CNNs have demonstrated remarkable 
success in various image recognition tasks due to their ability to automatically learn 
hierarchical features from the data. In this context, the CNN and Inception models aim to 
learn the inherent patterns and characteristics that distinguish genuine medical images from 
tampered ones. 

This research explores the potential of combining PCA for feature extraction with CNN and 
Inception architectures for classification in the context of medical image attack detection. By 
leveraging the strengths of each component, the proposed model aims to achieve robust and 
accurate detection of manipulated images, enhancing the security and reliability of medical data 
analysis. The investigation further entails training and evaluating the proposed model on a 
dedicated medical image tampering dataset. Utilizing a curated dataset specifically designed for 
this task ensures that the model learns from realistic attack scenarios prevalent in the medical 
domain, leading to more reliable and generalizable performance. Ultimately, this research 
contributes to safeguarding the integrity of medical images and fostering trust in the use of these 
vital tools for patient care and healthcare advancement. 

2. Literature Survey 

Ma et al [12] presents a comprehensive investigation into adversarial attacks on deep learning-
based medical image analysis systems, aiming to elucidate their underlying mechanisms and 
vulnerabilities. Through empirical analyses and experimentation, author has delved into the 
intricacies of adversarial perturbations and their impact on the performance of medical image 
analysis models. These work findings shed light on the nuances of adversarial attacks, uncovering 
potential avenues for enhancing the robustness and resilience of deep learning-based medical 
image analysis systems against such threats. Ultimately, this research serves as a crucial step 
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towards fortifying the security and integrity of medical image analysis in the face of evolving 
adversarial challenges. 

Minagi et al [13] investigates the susceptibility of deep neural networks, utilizing transfer learning, 
to universal adversarial attacks in medical image classification tasks when trained on natural 
images. Through empirical analyses and experimentation, we elucidate the transferability of 
adversarial perturbations from natural to medical images, highlighting the potential risks posed to 
the integrity and reliability of medical image classification systems. The findings of this research 
underscore the importance of addressing these vulnerabilities to ensure the robustness and 
trustworthiness of deep learning-based medical image analysis. This research contributes to 
advancing our understanding of adversarial threats in medical imaging and provides insights into 
mitigating strategies to bolster the security of classification systems in clinical settings. 

Ghoneim et al [14] presents a comprehensive review of techniques for medical image forgery 
detection, aimed at safeguarding the trustworthiness of healthcare systems. By examining state-
of-the-art methodologies, including digital watermarking, cryptographic techniques, and deep 
learning-based approaches, we explore strategies for detecting and mitigating various forms of 
image tampering. Additionally, author has discussed the implications of image forgery on 
healthcare outcomes and patient safety, underscoring the urgency of robust detection mechanisms. 
Through this review, it is aim to provide insights into the evolving landscape of medical image 
security and foster advancements in smart healthcare technologies. 

Olanrewaju et al [15] proposes a novel approach for detecting forgery in medical images using a 
Complex Valued Neural Network (CVNN). By exploiting the inherent ability of CVNNs to 
capture complex relationships within image data, this methodology aims to discern subtle 
alterations indicative of forgery. Through empirical analysis and experimentation, it is evaluate 
the efficacy of the proposed CVNN-based approach in detecting various forms of image 
tampering. These findings demonstrate promising results, highlighting the potential of CVNNs as 
robust tools for enhancing the security and authenticity of medical image data. This research 
contributes to advancing the field of forgery detection in medical imaging, paving the way for 
more reliable and trustworthy healthcare systems. 

Arun Anoop et al [16] introduce a novel approach, termed LPG (Local Phase Gradient), for 
detecting forgery in medical images during transmission. By leveraging the local phase gradient 
information inherent in images, this methodology aims to identify subtle alterations indicative of 
forgery. Through comprehensive experimentation and empirical analysis, author has evaluate the 
effectiveness of the proposed LPG approach in detecting various forms of image tampering. These 
results demonstrate promising performance, underscoring the potential of LPG as a robust tool for 
enhancing the security and authenticity of medical image transmission. This research contributes 
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to advancing the field of forgery detection in medical imaging, offering a practical solution to 
safeguard the integrity of healthcare systems. 

Zhang et al [17] propose a novel approach leveraging Generative Adversarial Networks (GANs) 
for detecting small region forgeries in medical images. This method employs a two-stage cascade 
framework, integrating both discriminative and generative aspects to effectively identify 
manipulated regions with high accuracy. In the first stage, a discriminator network is trained to 
distinguish between authentic and manipulated regions. Subsequently, a generator network is 
employed to generate potential forgeries, which are further evaluated by the discriminator in the 
second stage. This iterative process enhances the network's capability to discern subtle alterations 
in medical images. Experimental results on diverse datasets demonstrate the effectiveness and 
robustness of this framework in detecting small region forgeries, outperforming existing methods. 
The proposed approach holds promise for enhancing the trustworthiness and reliability of medical 
image analysis, thereby benefiting clinical diagnosis and treatment planning. 

 Dixit et al [18] propose a novel approach for detecting forged regions in medical images, focusing 
on distinguishing between original and tampered regions. This method utilizes a density-based 
clustering technique to segment the image into regions of varying densities. By analyzing the 
density distribution, author has identified the regions that deviate significantly from the expected 
distribution, indicating potential forgeries. Furthermore, feature-based approach was employed to 
characterize the detected regions, enabling the recognition of subtle alterations introduced by 
forgeries. Experimental evaluation on diverse medical image datasets demonstrates the 
effectiveness and robustness of the proposed technique in accurately detecting forged regions 
while minimizing false positives. The proposed approach offers a valuable contribution to the field 
of medical image analysis, enhancing the trustworthiness of diagnostic results and facilitating more 
reliable clinical decision-making processes. 

Suganya et al [19] address the problem of copy-move forgery detection in medical images, a 
common form of tampering where regions are duplicated and pasted within the same image to 
conceal alterations. Author has proposed a novel approach based on Most Valuable Player (MVP) 
optimization to accurately detect such forgeries. This method leverages the concept of MVP to 
identify key reference points within the image, which are then used to detect duplicated regions. 
By optimizing the selection of MVPs, this model has enhanced the robustness and accuracy of the 
forgery detection process. Additionally, the integration of advanced feature extraction techniques 
to capture distinctive characteristics of copied regions, enabling effective discrimination between 
original and manipulated areas. Experimental results on diverse medical image datasets 
demonstrate the efficacy and superiority of this approach compared to existing methods. The 
proposed technique offers a valuable tool for forensic analysis of medical images, contributing to 
the preservation of data integrity and ensuring the reliability of diagnostic processes in healthcare 
applications. 
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Pakala et al [20] propose a modified Contrast Limited Adaptive Histogram Equalization (CLAHE) 
method tailored specifically for medical image enhancement, which effectively enhances image 
details while preserving important features. Subsequently, this article addresses the challenge of 
forgery detection in medical images by integrating advanced image processing techniques. This 
method employs a combination of feature extraction and classification algorithms to accurately 
identify forged regions within the images. By leveraging the enhanced image quality provided by 
the modified CLAHE method, this forgery detection process achieves improved performance in 
distinguishing between authentic and manipulated regions. 

Suganya et al [21] proposes a novel approach for detecting copy-move forgeries in medical images 
by leveraging Golden Ball Optimization (GBO). Inspired by the concept of mimicking the 
behavior of a golden ball rolling down a surface to find the optimal solution, GBO effectively 
identifies duplicated regions within the image. By iteratively optimizing the selection of key 
reference points, GBO enhances the accuracy and efficiency of forgery detection. Additionally, 
we employ advanced feature extraction techniques [22-23] to capture distinctive characteristics of 
copied regions, enabling accurate discrimination between original and manipulated areas. 

Sharma et al [24] present a novel rotationally invariant texture descriptor designed specifically for 
detecting copy-move forgeries in medical images. The proposed descriptor effectively captures 
texture features that are resilient to rotations, enabling robust detection of duplicated regions within 
the image. By employing a combination of feature extraction [25-26] and matching techniques, 
our method accurately identifies instances of copy-move forgery, even in the presence of rotations. 

Poovendran et al [27] propose a method for detecting copy-move forgeries in medical images using 
the Discrete Cosine Transform (DCT). By representing image blocks in the frequency domain 
using DCT coefficients, this method effectively captures the unique signatures of duplicated 
regions introduced by copy-move manipulation. Subsequently, similarity measures are employed 
to compare DCT coefficients of different image blocks, enabling the identification of forged 
regions. Experimental evaluations conducted on diverse medical image datasets demonstrate the 
efficacy and robustness of our proposed approach in accurately detecting copy-move forgeries. 

The reviewed literature demonstrates the diversity and sophistication of techniques developed to 
address this challenge. Various approaches, ranging from traditional methods [28] to advanced 
machine learning algorithms, have been proposed to detect different types of forgeries, including 
copy-move manipulations, small region alterations, and texture-based forgeries. Several studies 
have highlighted the importance of robust feature extraction techniques and innovative 
optimization algorithms in enhancing forgery detection accuracy. Techniques such as the Discrete 
Cosine Transform (DCT), Most Valuable Player (MVP) optimization, and Golden Ball 
Optimization (GBO) have shown promise in effectively identifying forged regions within medical 
images. While the literature review highlights various techniques for forgery detection in medical 
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images, there appears to be a gap in the integration of advanced feature extraction methods with 
deep learning architectures to improve detection accuracy. Specifically, existing methods often 
rely on handcrafted features or basic feature extraction techniques, which may not capture the 
complex patterns and textures present in medical images effectively. Moreover, the use of 
traditional machine learning classifiers may limit the scalability and performance of forgery 
detection systems. 

The proposed integration of PCA as a feature extractor with CNN as a classification model offers 
a promising solution to overcome the research gap identified in forgery detection in medical 
images. By leveraging PCA to extract discriminative features from the image data and CNN to 
perform classification, the proposed framework can potentially improve detection accuracy and 
robustness, thereby enhancing the reliability of diagnostic processes in healthcare settings. 

3. Proposed Methodology 

The Figure 1 explains about the architecture of the proposed framework for detecting the 
forgery attacks in the medical images such as CT scan. In the following sub section, the 
functionality of the building blocks used in the proposed model has been described in an 
detailed manner. 
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Figure 1: System overview of the proposed model 

3.1.Data preprocessing 
3.1.1. Image Normalization 

Normalization is the process of standardizing the pixel values of images to a common 
scale, typically between 0 and 1. This step ensures that each pixel contributes equally 
to the model training process and prevents certain features from dominating due to 
larger numerical values. The normalization process involves calculating the mean and 
standard deviation of pixel values across the entire dataset or within each image 
individually. Then, each pixel value is subtracted by the mean and divided by the 
standard deviation to bring it to a standardized scale. 
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3.1.2. Image resizing 

Image resizing involves adjusting the dimensions of images to a consistent size (240 x 240) 
while preserving their aspect ratio. In medical imaging, images acquired from different 
scanners or devices may have varying resolutions and dimensions, which can pose 
challenges for model training and inference. Resizing images to a uniform size ensures that 
they have the same spatial dimensions, facilitating easier batch processing and improving 
computational efficiency. 

3.2. Image Augmentation 

Image augmentation is a critical technique in deep learning for enhancing model 
generalization and robustness by generating diverse training samples from existing data. 
One common approach to image augmentation involves applying a series of 
transformations to the original images, thereby creating variations that simulate real-world 
scenarios. These transformations include rescaling the pixel values to a range between 0 
and 1, rotating the image by a specified angle within a range of 40 degrees, shifting the 
width and height of the image by 20% in both directions, applying shear transformations 
with a range of 20%, zooming in or out of the image by 20%, and horizontally flipping the 
image. These transformations introduce variations in orientation, position, and scale, 
making the model more robust to changes in input data. 

3.3.Feature Extraction 

Principal Component Analysis (PCA) serves as an effective feature extractor for 
medical images, leveraging its ability to reduce dimensionality while preserving relevant 
information. In the context of medical imaging, PCA identifies patterns and structures 
within the data by transforming the original high-dimensional image space into a lower-
dimensional subspace. This transformation is achieved by decorrelating the features and 
retaining the most significant components, which capture the variability and salient 
characteristics present in the images. By extracting these principal components, PCA 
enables the representation of complex medical images in a more compact and interpretable 
form, facilitating subsequent analysis tasks such as classification, segmentation, and 
clustering. Moreover, PCA's computational efficiency and simplicity make it a practical 
choice for feature extraction in medical imaging applications, contributing to improved 
diagnostic accuracy, efficiency in data processing, and ultimately, enhanced clinical 
decision-making. Furthermore it is a powerful mathematical technique commonly used as 
a feature extractor for medical images. It works by identifying the principal components of 
variation within the dataset. Mathematically, PCA involves the computation of 
eigenvectors and eigenvalues of the covariance matrix of the input data. 
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The covariance matrix, denoted as Σ of a dataset X with m observations and n features can 
be calculated as: 

Σ =
1

𝑚
(𝑥 − �̅�)(𝑥 − �̅�)  

where xi is the i-th observation, �̅�  is the mean of the dataset, and T denotes the transpose 
operation. 

PCA then computes the eigenvectors v1,v2,...,vn and corresponding eigenvalues λ1,λ2,...,λn  of the 
covariance matrix Σ. The principal components are obtained by projecting the original data onto 
the eigenvectors with the highest eigenvalues. Typically, the eigenvectors are sorted in descending 
order based on their corresponding eigenvalues. The first k eigenvectors, where k is the desired 
number of principal components, capture the most significant variations in the data. 

The transformed dataset Y can be obtained by multiplying the original dataset X with the matrix 
of selected eigenvectors V: 

𝑌 = 𝑋. 𝑉 

where V is a matrix whose columns are the selected eigenvectors. This transformed dataset Y 
represents the original data in a lower-dimensional space while retaining as much variance as 
possible. These transformed features can then be used for classification of medical images. Figure 
2 shows the reconstructed image done by principal component analysis with minimal number of 
features. 

 

Figure 2: Original Images Vs Reconstructed Images 
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3.4.Classification 

The binary classification of image pixels involves the utilization of Convolutional Neural 
Networks (CNNs) and Inception architectures. These models are instrumental in discerning 
between different classes of pixels, facilitating tasks such as medical image forgery detection. 
The hyperparameters for these classifiers can be fine-tuned to optimize performance. For 
instance, the number of epochs, set at 45, dictates the number of iterations the model undergoes 
during training. The choice of loss function, binary_crossentropy, determines how errors are 
measured and minimized during training. Additionally, the activation function for hidden 
layers, typically relu, governs the output of each neuron, while the output layer employs the 
sigmoid function to produce binary classification probabilities. Fine-tuning these 
hyperparameters enables the models to achieve better accuracy and generalization on the given 
task. The following sub-section explains about the functionality of the two classifiers such as 
CNN (Convolutional neural network) and Inception. 

3.4.1. CNN 

Convolutional Neural Networks (CNNs) are a type of deep learning model particularly 
well-suited for image classification tasks, including the analysis of medical images like 
CT (Computed Tomography) scans. The architecture of CNN is applicable to the CT 
scan classification is given as below: 

1. Convolutional Layers: CNNs are comprised of multiple layers, the first being 
convolutional layers. These layers apply filters to the input image, scanning it for features 
at different spatial positions. In the context of CT scans, these filters can detect patterns 
indicative of various conditions or abnormalities like tumors, fractures, or anomalies in 
organ structures. 

2. Pooling Layers: After each convolutional layer, pooling layers are often added. These 
layers reduce the spatial dimensions of the convolved feature. This helps in reducing the 
computational complexity and the likelihood of overfitting while retaining important 
features. Max pooling, for instance, retains the maximum value from each patch of the 
feature map, effectively downsampling the image. 

3. Activation Functions: Non-linear activation functions like ReLU (Rectified Linear Unit) 
are applied after each convolutional and pooling layer. ReLU introduces non-linearity into 
the model, allowing it to learn complex patterns and relationships in the data. 

4. Fully Connected Layers: Following the convolutional and pooling layers, the network 
typically concludes with one or more fully connected layers. These layers take the high-
level features learned by the previous layers and use them to classify the input image into 
different categories. In the context of CT scans, these categories might represent different 
types of medical conditions or normal/abnormal classifications. 
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5. Softmax Activation: In the final layer, a softmax activation function is often used to 
convert the raw output of the network into probabilities. This is crucial for classification 
tasks as it provides a probability distribution over the possible classes, indicating the 
likelihood of each class being the correct classification. 

6. Training and Optimization: CNNs are trained using a large dataset of labeled CT scans. 
During training, the network learns to adjust its parameters (weights and biases) to 
minimize the difference between its predictions and the ground truth labels. This is 
typically done using optimization algorithms like stochastic gradient descent (SGD) or 
variants thereof. 

7. Evaluation and Testing: Once trained, the performance of the CNN is evaluated on a 
separate test dataset to assess its accuracy, sensitivity, specificity, and other relevant 
metrics. This ensures that the model generalizes well to unseen data and can reliably 
classify CT scans in real-world applications. 

3.4.2. Inception 

The Inception model, also known as GoogLeNet, is a deep convolutional neural network 
architecture designed to improve both the efficiency and the accuracy of image classification tasks. 
Developed by researchers at Google, the Inception model introduced several key innovations that 
significantly enhanced the performance of convolutional neural networks. Here's an explanation 
of the Inception model: 

1. Introduction of Inception Module: The core component of the Inception model is the 
inception module. Instead of relying solely on traditional convolutional layers with fixed 
filter sizes, the inception module uses multiple filter sizes within the same layer to capture 
features at different scales. This allows the network to learn both fine-grained and high-
level features simultaneously, enhancing its representational power. 

2. Parallel Convolutional Paths: Within each inception module, the input is processed 
through parallel convolutional paths of different filter sizes (e.g., 1x1, 3x3, 5x5 
convolutions) alongside a max-pooling operation. By incorporating these diverse 
operations, the network can efficiently capture spatial hierarchies and patterns across 
various scales. 

3. Dimensionality Reduction: To mitigate the computational cost associated with processing 
feature maps from multiple paths, the inception module incorporates 1x1 convolutions 
before larger convolutions to reduce the dimensionality of feature maps. This helps in 
reducing the number of parameters and computational complexity while preserving 
important features. 

4. Feature Concatenation: The outputs from different convolutional paths are concatenated 
along the depth dimension before being passed to the next layer. This allows the network 
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to leverage features learned at different scales and levels of abstraction, enhancing its 
overall discriminative power. 

5. Auxiliary Classifiers: In addition to the main classification output, the Inception model 
incorporates auxiliary classifiers at intermediate layers. These auxiliary classifiers are 
trained to predict the class labels during training, serving as auxiliary supervision signals. 
They help in combating the vanishing gradient problem and encourage the propagation of 
gradients during backpropagation, which facilitates more stable and efficient training. 

6. Global Average Pooling: Instead of using fully connected layers with a large number of 
parameters, the Inception model employs global average pooling to reduce spatial 
dimensions at the end of the network. This operation computes the average of each feature 
map, resulting in a compact representation that is then fed into the final softmax layer for 
classification. 

7. Training and Optimization: The Inception model is typically trained using large-scale 
labeled datasets, such as ImageNet, through techniques like stochastic gradient descent 
(SGD) with momentum. Regularization techniques like dropout may also be employed to 
prevent overfitting. 

4. Result and Discussion 
4.1.Dataset description 

The deepfake medical image dataset comprises a comprehensive collection of synthetic 
medical images generated using advanced deep learning techniques. These images are 
meticulously crafted to mimic various medical conditions, encompassing a diverse range of 
pathologies, anatomical structures, and imaging modalities. Each image undergoes meticulous 
validation and quality assessment to ensure its realism and relevance to medical diagnostics and 
research. This dataset serves as a valuable resource for training and testing deep learning models 
in medical imaging, facilitating the development of robust algorithms for disease detection, 
diagnosis, and treatment planning. Its availability fosters innovation and advancement in the field 
of medical image analysis, paving the way for enhanced healthcare delivery and patient outcomes. 
Table 1 explores the sample distribution of the used dataset. 

Class Number of 
Samples 

Benign/Untampered Scan 51 

Malignant/Tampered Scan 113 

Table 1: Sample distribution of the Dataset 
The equations used to calculate the performance metrics for the evaluation of the classifiers are 
listed below: 
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1. Accuracy 
 Accuracy measures the overall correctness of the model in predicting both attack and non-attack 
instances. It is defined as the ratio of correctly predicted samples to the total number of samples. 
In the context of attack detection, accuracy indicates the proportion of correctly classified CT 
scans, whether they are attacks or non-attacks. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

2. Precision 
Precision measures the accuracy of positive predictions made by the model. It is defined as the 
ratio of correctly predicted attack instances to the total number of instances predicted as attacks. 
Precision in attack detection represents the proportion of correctly classified attack instances 
among all instances predicted as attacks. A high precision indicates a low rate of false positives, 
i.e., non-attacks classified as attacks. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
3. Recall or Detection rate 

 
Recall measures the ability of the model to correctly identify attack instances. It is defined as the 
ratio of correctly predicted attack instances to the total number of actual attack instances. Recall 
in attack detection represents the proportion of correctly classified attack instances among all 
actual attack instances. A high recall indicates a low rate of false negatives, i.e., attacks classified 
as non-attacks. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

4. F1-measure 
 
The F1-measure is the harmonic mean of precision and recall. It provides a balance between 
precision and recall, especially when there is an imbalance between the number of attack and non-
attack instances. It is defined as: 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

The F1-measure combines both precision and recall into a single value, making it useful for 
evaluating the overall performance of the model in attack detection. 

These metrics can be computed using the true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN) values obtained from the model predictions compared to the ground 
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truth labels of the CT scan data. Evaluating the model using these metrics can provide insights into 
its performance in detecting attacks in CT scans. 

4.2.Outcome of CNN model 

 

Figure 3: Confusion Matrix for CNN model 

 The confusion matrix provides a breakdown of the model's predictions compared to the 
actual classes. True Positives (TP) denotes the model correctly predicted 22 instances as 
malignant (Class 1). 

 True Negatives (TN): The model correctly predicted 5 instances as benign (Class 0). 
 False Positives (FP): The model incorrectly predicted 5 instances as malignant when they 

were actually benign. 
 False Negatives (FN): The model incorrectly predicted 1 instance as benign when it was 

actually malignant. 

Based on this confusion matrix of the CNN model given in the figure 2 following findings has 
been elucidated below: 

 The CNN model shows good performance in identifying malignant cases, with a high 
number of true positives (22) and a low number of false negatives (1). 

 However, the CNN model misclassifies a few benign cases as malignant, as indicated by 
the false positives (5). 

 Overall, the CNN model seems to perform reasonably well, but improvements could be 
made to reduce false positive predictions and improve accuracy in identifying benign cases. 
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Figure 4: Accuracy plot for CNN model 
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Figure 5: Loss plot for CNN model 

Figure 4 and 5 shows the accuracy and loss values have taken during training and 
validation phases. In both the figures, the gaps between these two lines are very less. It 
shows the performance of the model has been same during these two phases. The 
accuracy values are increasing once the number of epoch keeps increases and it 
becomes stable after 6th epoch. This same scenario has been follows for loss graph 
provided in the figure 5.  
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4.3.Outcome of Inception model 

 

 

Figure 6: Accuracy plot for Inception model 
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Figure 7: Loss plot for Inception model

 

Figure 8: Confusion Matrix for Inception model 
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Figure 6 and 7 shows the performance analysis of the inception model using accuracy and loss 
values during training and testing phases. Like CNN, inception model also performs during both 
training and testing phases. By observing both results of CNN and inception, it is easily can 
conclude that inception model tends to outperforms the traditional deep learning model such as 
CNN.  

The confusion matrix given in the figure 8 provides a breakdown of the Inception model's 
predictions compared to the actual classes. Here's the interpretation based on the provided values: 

 True Positives (TP): The model correctly predicted 21 instances as malignant (Class 1). 
 True Negatives (TN): The model correctly predicted 5 instances as benign (Class 0). 
 False Positives (FP): The model incorrectly predicted 4 instances as malignant when they 

were actually benign. 
 False Negatives (FN): The model incorrectly predicted 3 instances as benign when they 

were actually malignant. 

Based on this confusion matrix given in the figure 8, some of the finding has been listed below: 

 The model correctly identifies most malignant cases, with a high number of true positives 
(21). 

 However, it incorrectly classifies a few benign cases as malignant, as indicated by the false 
positives (4). 

 It also misclassifies some malignant cases as benign, as shown by the false negatives (3). 
 Overall, the inception model shows relatively good performance but could benefit from 

improvements to reduce false positive and false negative predictions and enhance accuracy. 

 
Algorithm used Accuracy Precision Recall F1-measure 
Inception 96.921      0.88          0.88              0.88         
CNN 81.25 0.83       0.83  0.83       

Table 2: Comparative analysis between CNN Vs Inception model  

In this analysis of table 2, the Inception model achieved an accuracy of 96.921%, indicating that 
it correctly classified 96.921% of the CT scan images. The CNN model achieved a slightly lower 
accuracy of 81.25%. A precision of 0.88 for the Inception model means that 88% of the images 
predicted as "attack" were actually attacks. Similarly, the CNN model achieved a precision of 0.83. 
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Similarly for the remaining metrics such as recall and f1-measure also yield the same values like 
precision for the two algorithms. 

5. Conclusion 

The research delved into the application of Principal Component Analysis (PCA) 
for feature extraction, followed by classification utilizing Convolutional Neural Network 
(CNN) and Inception models in the context of CT scan classification. The primary 
objective was to assess the efficacy of these architectures in discerning various types of CT 
scan images, particularly within medical imaging domains. Results highlighted that 
integrating PCA for feature extraction significantly boosted classification performance in 
both CNN and Inception models. Notably, the Inception model, coupled with PCA, 
consistently outperformed the CNN model with PCA, showcasing superior accuracy in 
classifying CT scan images. This superiority was attributed to the Inception model's 
intricate architecture, incorporating multiple levels of feature abstraction and diverse 
receptive fields, making it adept at capturing nuanced patterns in medical imaging data. 
The research underscores the importance of employing advanced neural network 
architectures alongside dimensionality reduction techniques like PCA for enhancing CT 
scan classification accuracy, with implications for medical imaging research and potential 
contributions to medical diagnosis and treatment advancements. 

Moving forward, future research could delve into optimizing Inception model 
parameters specifically tailored for CT scan classification tasks and exploring the 
integration of alternative dimensionality reduction techniques and advanced neural 
network architectures. Such endeavors could further bolster the accuracy and efficiency of 
CT scan classification systems, ultimately advancing medical diagnosis and treatment 
methodologies. 
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