BIPOLAR VAGUE α GENERALIZED CLOSED SETS IN TOPOLOGICAL SPACES

F. Prishka¹ and Dr. L. Mariapresenti²

¹Research Scholar, Department of Mathematics, Nirmala College for Women, Redfield's, Coimbatore, Tamil Nadu, India.
²Assistant Professor, Department of Mathematics, Nirmala College for Women, Redfield's, Coimbatore, Tamil Nadu, India.
Email¹: prishkamaths@gmail.com and Email²: presentimaria88@gmail.com

Abstract: In this paper a new concept of bipolar vague closed sets called bipolar vague α generalized closed sets are introduced and their properties are thoroughly studied and analyzed. Some new interesting propositions based on the newly introduced set are presented. Keywords: Bipolar vague sets, bipolar vague topology, bipolar vague α generalized closed sets.

1. Introduction

Fuzzy set was introduced by L.A.Zadeh [10] in 1965. The concept of fuzzy topology was introduced by C.L.Chang [3] in 1968. The generalized closed sets in general topology were first introduced by N.Levine [9] in 1970. K.Atanassov [2] in 1986 introduced the concept of intuitionistic fuzzy sets. The notion of vague set theory was introduced by W.L.Gau and D.J.Buehrer [7] in 1993. D.Coker [6] in 1997 introduced intuitionistic fuzzy topological spaces. Bipolar-valued fuzzy sets, which was introduced by K.M.Lee [8] in 2000 is an extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1] to [-1,1]. A new class of generalized bipolar vague sets was introduced by S.Cicily Flora and I.Arockiarani [4] in 2016. The purpose of this paper is to introduce and analyze the concept of bipolar vague closed sets called bipolar vague α generalized closed sets.

2. Preliminaries

Here in this paper the bipolar vague topological spaces are denoted by (X, BV_{τ}) . Also, the bipolar vague interior, bipolar vague closure of a bipolar vague set A are denoted by BVInt(A) and BVCl(A). The complement of a bipolar vague set A is denoted by A^c and the empty set and whole sets are denoted by 0_{\sim} and 1_{\sim} respectively.

Definition 2.1: [8] Let X be the universe. Then a bipolar valued fuzzy sets, A on X is defined by positive membership function μ_A^+ , that is μ_A^+ : X \rightarrow [0,1], and a negative membership function μ_A^- , that is μ_A^- : X \rightarrow [-1,0]. For the sake of simplicity, we shall use the symbol A = { $\langle x, \mu_A^+(x), \mu_A^-(x) \rangle$: $x \in X$ }.

Definition 2.2: [8] Let A and B be two bipolar valued fuzzy sets then their union, intersection and complement are defined as follows:

(i) $\mu_{A\cup B}^+ = \max \{\mu_A^+(x), \mu_B^+ x\}$

- (ii) $\mu_{A\cup B}^- = \min \{\mu_A^-(x), \mu_B^- x)\}$
- (iii) $\mu_{A\cap B}^+ = \min \{\mu_A^+(x), \mu_B^+ x)\}$
- (iv) $\mu_{A\cap B}^- = \max \{\mu_A^-(x), \mu_B^- x\}$
- (v) $\mu_{A^c}^+(x) = 1 \mu_A^+(x)$ and $\mu_{A^c}^-(x) = -1 \mu_A^-(x)$ for all $x \in X$.

Definition 2.3: [7] A vague set A in the universe of discourse U is a pair of (t_A, f_A) where $t_A: U \rightarrow [0,1], f_A: U \rightarrow [0,1]$ are the mapping such that $t_A + f_A \leq 1$ for all $u \in U$. The function t_A and f_A are called true membership function and false membership function respectively. The interval $[t_A, 1 - f_A]$ is called the vague value of u in A, and denoted by $v_A(u)$, that is $v_A(u) = [t_A(u), 1 - f(u)]$.

Definition 2.4: [7] Let A be a non-empty set and the vague set A and B in the form $A = \{\langle x, t_A(x), 1 - f_A(x) \rangle : x \in X\}, B = \{\langle x, t_B(x), 1 - f_B(x) \rangle : x \in X\}$. Then

- (i) $A \subseteq B$ if and only if $t_A(x) \leq t_B(x)$ and $1 f_A(x) \leq 1 f_B(x)$
- (ii) A U B = { $\langle \max(t_A(x), t_B(x)), \max(1 f_A(x), 1 f_B(x)) \rangle / x \in X$ }.
- (iii) $A \cap B = \{ \langle \min(t_A(x), t_B(x)), \min(1 f_A(x), 1 f_B(x)) \rangle | x \in X \}.$
- (iv) $A^c = \{ \langle x, f_A(x), 1 t_A(x) \rangle : x \in X \}.$

Definition 2.5: [1] Let X be the universe of discourse. A bipolar-valued vague set A in X is an object having the form $A = \{\langle x, [t_A^+(x), 1 - f_A^+(x)], [-1 - f_A^-(x), t_A^-(x)] \rangle : x \in X \}$ where $[t_A^+, 1 - f_A^+] : X \rightarrow [0,1]$ and $[-1 - f_A^-, t_A^-] : X \rightarrow [-1,0]$ are the mapping such that $t_A^+(x) + f_A^+(x) \le 1$ and $-1 \le t_A^- + f_A^-$. The positive membership degree $[t_A^+(x), 1 - f_A^+(x)]$ denotes the satisfaction region of an element x to the property corresponding to a bipolar-valued set A and the negative membership degree $[-1 - f_A^-(x), t_A^-(x)]$ denotes the satisfaction region of x to some implicit counter property of A. For a sake of simplicity, we shall use the notion of bipolar vague set $v_A^+ = [t_A^+, 1 - f_A^+]$ and $v_A^- = [-1 - f_A^-, t_A^-]$.

Definition 2.6: [5] A bipolar vague set $A = [v_A^+, v_A^-]$ of a set U with $v_A^+ = 0$ implies that $t_A^+ = 0$, $1 - f_A^+ = 0$ and $v_A^- = 0$ implies that $t_A^- = 0$, $-1 - f_A^- = 0$ for all $x \in U$ is called zero bipolar vague set and it is denoted by 0.

Definition 2.7: [5] A bipolar vague set $A = [v_A^+, v_A^-]$ of a set U with $v_A^+ = 1$ implies that $t_A^+ = 1$, $1 - f_A^+ = 1$ and $v_A^- = -1$ implies that $t_A^- = -1$, $-1 - f_A^- = -1$ for all $x \in U$ is called unit bipolar vague set and it is denoted by 1.

Definition 2.8: [4] Let A = $\langle x, [t_A^+, 1 - f_A^+], [-1 - f_A^-, t_A^-] \rangle$ and $\langle x, [t_B^+, 1 - f_B^+], [-1 - f_B^-, t_B^-] \rangle$ be two bipolar vague sets then their union, intersection and complement are defined as follows:

(i) A U B = {
$$\langle x, [t_{A\cup B}^+(x), 1 - f_{A\cup B}^+(x)], [-1 - f_{A\cup B}^-(x), t_{A\cup B}^-(x)] \rangle / x \in X$$
 } where
 $t_{A\cup B}^+(x) = \max \{t_A^+(x), t_B^+(x)\}, t_{A\cup B}^-(x) = \min \{t_A^-(x), t_B^-(x)\}$ and
 $1 - f_{A\cup B}^+(x) = \max \{1 - f_A^+(x), 1 - f_B^+(x)\},$
 $-1 - f_{A\cup B}^-(x) = \min \{-1 - f_A^-(x), -1 - f_B^-(x)\}.$
(ii) A \cap B = { $\langle x, [t_{A\cap B}^+(x), 1 - f_{A\cap B}^+(x)], [-1 - f_{A\cap B}^-(x), t_{A\cap B}^-(x)] \rangle / x \in X$ } where
 $t_{A\cap B}^+(x) = \min \{t_A^+(x), t_B^+(x)\}, t_{A\cap B}^-(x) = \max \{t_A^-(x), t_B^-(x)\}$ and
 $1 - f_{A\cap B}^+(x) = \min \{1 - f_A^+(x), 1 - f_B^+(x)\},$

Vol. 21, No. 1, (2024) ISSN: 1005-0930 1391

JOURNAL OF BASIC SCIENCE AND ENGINEERING

 $-1 - f_{A \cup B}^{-}(x) = \max \{-1 - f_{A}^{-}(x), -1 - f_{B}^{-}(x)\}.$

(iii) $A^{c} = \{ \langle \mathbf{x}, [f_{A}^{+}(\mathbf{x}), 1 - t_{A}^{+}(\mathbf{x})], [-1 - t_{A}^{-}(\mathbf{x}), f_{A}^{-}(\mathbf{x})] \rangle / \mathbf{x} \in \mathbf{X} \}.$

Definition 2.9: [4] Let A and B be two bipolar vague sets defined over a universe of discourse X. We say that $A \subseteq B$ if and only if $t_A^+(x) \le t_B^+(x)$, $1 - f_A^+(x) \le 1 - f_B^+(x)$ and $t_A^-(x) \ge t_B^-(x)$, $-1 - f_A^-(x) \ge 1 - f_B^-(x)$ for all $x \in X$.

Definition 2.10: [4] A bipolar vague topology (BVT) on a non-empty set X is a family BV_{τ} of bipolar vague set in X satisfying the following axioms:

(i) $0_{\sim}, 1_{\sim} \in BV_{\tau}$

(ii) $G_1 \cap G_2 \in BV_{\tau}$, for any $G_1, G_2 \in BV_{\tau}$

(iii) $\bigcup G_i \in BV_{\tau}$, for any arbitrary family $\{G_i: G_i \in BV_{\tau}, i \in I\}$.

In this case the pair (X, BV_{τ}) is called a bipolar vague topological space and any bipolar vague set (BVS) in BV_{τ} is known as bipolar vague open set in X. The complement A^c of a bipolar vague open set (BVOS) A in a bipolar vague topological space (X, BV_{τ}) is called a bipolar vague closed set (BVCS) in X.

Definition 2.11: [4] Let (X, BV_{τ}) be a bipolar vague topological space $A = \langle x, [t_A^+, 1 - f_A^+], [-1 - f_A^-, t_A^-] \rangle$ be a bipolar vague set in X. Then the bipolar vague interior and bipolar vague closure of A are defined by,

BVInt(A) = \bigcup {G: G is a bipolar vague open set in X and G \subseteq A},

BVCl(A) = \cap {K: K is a bipolar vague closed set in X and A \subseteq K}.

Note that BVCl(A) is a bipolar vague closed set and BVInt(A) is a bipolar vague open set in X. Further,

(i) A is a bipolar vague closed set in X if and only if BVCl(A) = A,

(ii) A is a bipolar vague open set in X if and only if BVInt(A) = A.

Definition 2.12: [4] Let (X, BV_{τ}) be a bipolar vague topological space. A bipolar vague set A in (X, BV_{τ}) is said to be a generalized bipolar vague closed set if $BVCl(A) \subseteq G$ whenever $A \subseteq G$ and G is bipolar vague open. The complement of a generalized bipolar vague closed set is generalized bipolar vague open set.

Definition 2.13: [4] Let (X, BV_{τ}) be a bipolar vague topological space and A be a bipolar vague set in X. Then the generalized bipolar vague closure and generalized bipolar vague interior of A are defined by,

 $GBVCl(A) = \cap \{G: G \text{ is a generalized bipolar vague closed set in X and A \subseteq G\},\$

 $GBInt(A) = \bigcup \{G: G \text{ is a generalized bipolar vague open set in X and A \supseteq G \}.$

3. Bipolar Vague α Generalized Closed Sets in Topological Spaces

In this section we introduce bipolar vague α closure, bipolar vague α interior and α generalized closed set and its respective open set in bipolar vague topological spaces and discuss some of their properties.

Definition 3.1: A bipolar vague set A of a bipolar vague topological space X, is said to be

- (i) a bipolar vague α -open set if $A \subseteq BVInt(BVCl(BVInt(A)))$
- (ii) a bipolar vague pre-open set if $A \subseteq BVInt(BVCl(A))$

JOURNAL OF BASIC SCIENCE AND ENGINEERING

- (iii) a bipolar vague semi-open set if $A \subseteq BVCl(BVInt(A))$
- (iv) a bipolar vague semi- α -open set if A \subseteq BVCl(α BVInt(A))
- (v) a bipolar vague regular-open set BVInt(BVCl(A)) = A
- (vi) a bipolar vague β -open set $A \subseteq BVCl(BVInt(BVCl(A)))$.

Definition 3.2: A bipolar vague set A of a bipolar vague topological space X, is said to be

- (i) a bipolar vague α -closed set if BVCl(BVInt(BVCl(A))) \subseteq A
- (ii) a bipolar vague pre-closed set if $BVCl(BVInt(A)) \subseteq A$
- (iii) a bipolar vague semi-closed set if $BVInt(BVCl(A)) \subseteq A$
- (iv) a bipolar vague semi- α -closed set if BVInt(α BVCl(A)) \subseteq A
- (v) a bipolar vague regular-closed set if BVCl(BVInt(A)) = A
- (vi) a bipolar vague β -closed set if BVInt(BVCl(BVInt(A))) \subseteq A.

Definition 3.3: Let A be a bipolar vague set of a bipolar vague topological space (X, BV_{τ}). Then the bipolar vague α interior and bipolar vague α closure are defined as

 $BV_{\alpha}Int(A) = \bigcup \{G: G \text{ is a bipolar vague } \alpha \text{-open set in } X \text{ and } G \subseteq A\},\$

 $BV_{\alpha}Cl(A) = \cap \{K: K \text{ is a bipolar vague } \alpha \text{-closed set in } X \text{ and } A \subseteq K \}.$

Result 3.4: Let A be a bipolar vague set in X. Then $BV_{\alpha}Cl(A) = A \cup BVCl(BVInt(BVCl(A)))$. **Proof:** Since $BV_{\alpha}Cl(A)$ is a bipolar vague α -closed set. $BVCl(BVInt(BVCl(BV_{\alpha}Cl(A))))$ $\subseteq BV_{\alpha}Cl(A)$ and $A \cup BVCl(BVInt(BVCl(A))) \subseteq A \cup BVCl(BVInt(BVCl(BV_{\alpha}Cl(A))))$ $\subseteq A \cup BV_{\alpha}Cl(A) = BV_{\alpha}Cl(A)$ -------(i).

Now, $BVCl(BVInt(BVCl(A\cup BVCl(BVInt(BVCl(A))))) \subseteq BVCl(BVInt(BVCl(A\cup BVCl(A))))$ = $BVCl(BVInt(BVCl(BVCl(A)))) = BVCl(BVInt(BVCl(A))) \subseteq A\cup BVCl(BVInt(BVCl(A))).$ Therefore $A\cup BVCl(BVInt(BVCl(A)))$ is a bipolar vague α -closed set in X and hence $BV_{\alpha}Cl(A)$ $\subseteq A\cup BVCl(BVInt(BVCl(A)))$ -------(ii).

From (i) and (ii), $BV_{\alpha}Cl(A) = A \cup BVCl(BVInt(BVCl(A)))$.

Definition 3.5: A bipolar vague set A in a bipolar vague topological space X, is said to be a bipolar vague α generalized closed set if $BV_{\alpha}Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a bipolar vague open set in X. The complement A^c of a bipolar vague α generalized closed set A is a bipolar vague α generalized open set in X.

Example 3.6: Let $X = \{a,b\}$ and $\tau = \{0_{\sim}, A, B, 1_{\sim}\}$ where $A = \langle x, [0.5, 0.6] [-0.6, -0.6], [0.6, 0.9]$ [-0.6, -0.5] \rangle and $B = \langle x, [0.4, 0.5] [-0.5, -0.5], [0.4, 0.6] [-0.5, -0.4] \rangle$. Then τ is a bipolar vague topology. Let $M = \langle x, [0.5, 0.6] [-0.5, -0.4], [0.4, 0.5] [-0.4, -0.3] \rangle$ be any bipolar vague set in X. Then $M \subseteq A$ where A is a bipolar vague open set in X. Now $BV_{\alpha}Cl(M) = M \cup B^{c} = B^{c} \subseteq A$. Therefore, M is a bipolar vague α generalized closed set in X.

Proposition 3.7: Every bipolar vague closed set A is a bipolar vague α generalized closed set in X but not conversely in general.

Proof: Let $A \subseteq U$ where U is a bipolar vague open set in X. Now, $BV_{\alpha}Cl(A) = A \cup BVCl(BVInt(BVCl(A))) \subseteq A \cup BVCl(A) = A \cup A = A \subseteq U$, by hypothesis. Hence A is a bipolar vague α generalized closed set in X. **Example 3.8:** In Example 3.6, M is a bipolar vague α generalized closed set in X but not a bipolar vague closed set in X as BVCl(M) = B^c \neq M.

Remark 3.9: Every bipolar vague semi-closed set and every bipolar vague α generalized closed set in a bipolar vague topological space X are independent to each other in general.

Example 3.10: In Example 3.6, M is a bipolar vague α generalized closed set in X but not a bipolar vague semi-closed set as BVInt(BVCl(M)) = B $\not\subset$ M.

Example 3.11: Let $X = \{a,b\}$ and $\tau = \{0_{\sim}, A, B, C, 1_{\sim}\}$ where $A = \langle x, [0.5, 0.5] [-0.5, -0.5], [0.4, 0.4] [-0.3, -0.2] \rangle$, $B = \langle x, [0.8, 0.8] [-0.8, -0.8], [0.7, 0.7] [-0.8, -0.8] \rangle$ and $C = \langle x, [0.2, 0.2] [-0.2, -0.2], [0.1, 0.1] [-0.2, -0.2] \rangle$. Then τ is a bipolar vague topology. Let $M = \langle x, [0.5, 0.5] [-0.2, -0.3], [0.3, 0.3] [-0.2, -0.2] \rangle$ be any bipolar vague set in X. Then M is a bipolar vague semi-closed set but not a bipolar vague α generalized closed set as $M \subseteq A$, B and $BV_{\alpha}Cl(M) = M \cup A^{c} = A^{c} \not\subset A$.

Remark 3.12: Every bipolar vague pre-closed set and every bipolar vague α generalized closed set in a bipolar vague topological space X are independent to each other in general.

Example 3.13: In Example 3.11, M is a bipolar vague pre-closed set but not a bipolar vague α generalized closed set as seen in the respective example.

Example 3.14: Let X = {a,b} and τ = {0,, A, B, 1,} where A = $\langle x, [0.8, 0.5] [-0.5, -0.5]$, [0.7, 0.9] [-0.5, -0.5] \rangle and B = $\langle x, [0.5, 0.2] [-0.5, -0.5], [0.1, 0.3] [-0.5, -0.5] \rangle$. Then τ is a bipolar vague topology. Let M = $\langle x, [0.5, 0.3] [-0.5, -0.5], [0.2, 0.3] [-0.5, -0.5] \rangle$ be any bipolar vague set in X. Then M is a bipolar vague α generalized closed set in X but not a bipolar vague pre-closed set as BVCl(BVInt(M)) = B^c $\not\subset$ M.

Proposition 3.15: Every bipolar vague α -closed set A is a bipolar vague α generalized closed set in X but not conversely in general.

Proof: Let $A \subseteq U$, where U is a bipolar vague open set in X. Now $BV_{\alpha}Cl(A) = A \cup BVCl(BVInt(BVCl(A))) \subseteq A \cup A = A \subseteq U$, by hypothesis. Hence A is a bipolar vague α generalized closed set in X.

Example 3.16: In Example 3.6, M is a bipolar vague α generalized closed set in X but not bipolar vague α -closed set as BVCl(BVInt(BVCl(M))) = B^c $\not\subset$ M.

Proposition 3.17: Every bipolar vague open set, bipolar vague α -open set are bipolar vague α generalized open set but not conversely in general.

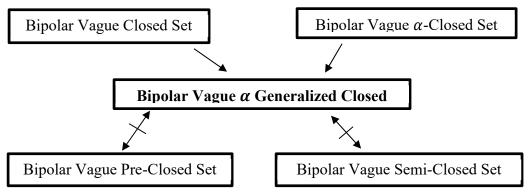
Proof: Obvious.

Example 3.18: In Example 3.6, M^c is a bipolar vague α generalized open set in X but not bipolar vague open set, bipolar vague α -open set in X.

Remark 3.19: Both bipolar vague semi-open set and bipolar vague pre-closed set are independent to bipolar vague α generalized open set in X in general.

Example 3.20: The above remark can be proved easily from the examples 3.10, 3.11 and 3.13, 3.14 respectively.

The following diagram implications are true:



Proposition 3.21: The union of any two bipolar vague α generalized closed sets is a bipolar vague α generalized closed set in a bipolar vague topological space X.

Proof: Let A and B be any two bipolar vague α generalized closed sets in a bipolar vague topological space X. Let $A \cup B \subseteq U$ where U is a bipolar vague open set in X. Then $A \subseteq U$ and $B \subseteq U$. Now $BV_{\alpha}Cl(A \cup B) = (A \cup B) \cup BVCl(BVInt(BVCl(A \cup B)))$ $\subseteq (A \cup B) \cup BVCl((BVCl(A \cup B))) \subseteq (A \cup B) \cup BVCl(A \cup B) \subseteq BVCl(A \cup B)) \subseteq BVCl(A \cup B) \subseteq U \cup U = U$, by hypothesis. Hence $A \cup B$ is a bipolar vague α generalized closed set in X.

Remark 3.22: The intersection of any two bipolar vague α generalized closed sets need not be a bipolar vague α generalized closed set in a bipolar vague topological space X.

Example 3.23: Let X = {a,b} and $\tau = \{0_{\sim}, A, B, 1_{\sim}\}$ where A = $\langle x, [0.5, 0.5] [-0.6, -0.4], [0.4, 0.4] [-0.3, -0.2] \rangle$ and B = $\langle x, [0.8, 0.8] [-0.3, -0.2], [0.7, 0.7] [-0.3, -0.2] \rangle$. Then τ is a bipolar vague topology. Let M = $\langle x, [0.6, 0.6] [-0.3, -0.2], [0.9, 0.9] [-0.3, -0.2] \rangle$ and N = $\langle x, [0.9, 0.9] [-0.3, -0.2] \rangle$ and N = $\langle x, [0.9, 0.9] [-0.3, -0.2] \rangle$ [-0.3, -0.2], [0.7, 0.7] [-0.3, -0.2] \rangle. Then M and N are bipolar vague α generalized closed sets in X but M \cap N = $\langle x, [0.6, 0.6] [-0.3, -0.2], [0.7, 0.7] [-0.3, -0.2] \rangle$ is not a bipolar vague α generalized closed set as M \cap N \subseteq B and BV $_{\alpha}$ Cl(M \cap N) =1 $_{\sim} \not \subset$ A.

Proposition 3.24: Let (X, BV_{τ}) be a bipolar vague topological space. Then for every A belongs to bipolar vague α generalized closed set in X and for every B belongs to bipolar vague set in X. A \subseteq B \subseteq BV_{α}Cl(A) implies B belongs to bipolar vague α generalized closed set in X.

Proof: Let $B \subseteq U$ and U be a bipolar vague open set in (X, BV_{τ}) . Then since $A \subseteq B$. $A \subseteq U$. By hypothesis, $B \subseteq BV_{\alpha}Cl(A)$. Therefore, $BV_{\alpha}Cl(B) \subseteq BV_{\alpha}Cl(BV_{\alpha}Cl(A)) = BV_{\alpha}Cl(A) \subseteq U$, since A is a bipolar vague α generalized closed set in (X, BV_{τ}) . Hence B belongs to bipolar vague α generalized closed set in X.

Proposition 3.25: If A is a bipolar vague open set and a bipolar vague α generalized closed set in (X, BV_{τ}), then A is a bipolar vague α -closed set in (X, BV_{τ}).

Proof: Since $A \subseteq A$ and A is a bipolar vague open set in (X, BV_{τ}) , by hypothesis, $BV_{\alpha}Cl(A) \subseteq A$. But $A \subseteq BV_{\alpha}Cl(A)$. Therefore, $BV_{\alpha}Cl(A) = A$. Hence A is a bipolar vague α -closed set in (X, BV_{τ}) . **Proposition 3.26:** Let (X, BV_{τ}) be a bipolar vague topological space. Then every bipolar vague set in (X, BV_{τ}) is a bipolar vague α generalized closed set in (X, BV_{τ}) if and only if bipolar vague α -open set in X equals bipolar vague α -closed set in X.

Proof: Necessity: Suppose that every bipolar vague set in (X, BV_{τ}) is a bipolar vague α generalized closed set in (X, BV_{τ}) . Let U belongs to bipolar vague open set in X. Then U belongs to bipolar vague α -open set in X and by hypothesis, $BV_{\alpha}Cl(U) \subseteq U \subseteq BV_{\alpha}Cl(U)$. This implies $BV_{\alpha}Cl(U) = U$. Therefore, U belongs to bipolar vague α -closed set in X. Hence bipolar vague α -open set in X contained in bipolar vague α -closed set in X. Let A belongs to bipolar vague α -closed set in X. Then A^c belongs to bipolar vague α -open set in X contained in bipolar vague α -closed set in X. Therefore, A belongs to bipolar vague α -closed set in X. Therefore, A belongs to bipolar vague α -closed set in X. Therefore, A belongs to bipolar vague α -closed set in X. Therefore, A belongs to bipolar vague α -closed set in X. Therefore, A belongs to bipolar vague α -closed set in X. Therefore, A belongs to bipolar vague α -closed set in X. Therefore, A belongs to bipolar vague α -closed set in X. Therefore, A belongs to bipolar vague α -closed set in X. Therefore, A belongs to bipolar vague α -closed set in X. Therefore, A belongs to bipolar vague α -closed set in X. Therefore, A belongs to bipolar vague α -closed set in X. Therefore, A belongs to bipolar vague α -closed set in X. Therefore, A belongs to bipolar vague α -closed set in X. Therefore, A belongs to bipolar vague α -closed set in X. Therefore, A belongs to bipolar vague α -closed set in X. Thus, bipolar vague α -open set in X equals bipolar vague α -closed set in X.

Sufficiency: Suppose that bipolar vague α -open set in X equals bipolar vague α -closed set in X. Let $A \subseteq U$ and U be a bipolar vague open set in (X, BV_{τ}) . Then U belongs to bipolar vague α -open set in X and $BV_{\alpha}Cl(A) \subseteq BV_{\alpha}Cl(U) = U$, since U belongs to bipolar vague α -closed set in X, by hypothesis. Therefore, A is a bipolar vague α generalized closed set in X.

Proposition 3.27: If A is a bipolar vague open set and a bipolar vague α generalized closed set in (X, BV_{τ}), then A is a bipolar vague regular-open set in (X, BV_{τ}).

Proof: Let A be a bipolar vague open set and a bipolar vague α generalized closed set in (X, BV_{τ}) . Then A is a bipolar vague α -closed set in X. Now BVInt(BVCl(A)) \subseteq BVCl(BVInt(BVCl(A))) \subseteq A. Since A is a bipolar vague open set, A = BVInt(A) \subseteq BVInt(BVCl(A)). Hence BVInt(BVCl(A)) = A and A is a bipolar vague regular-open set in X.

Definition 3.28: A bipolar vague set A in (X, BV_{τ}) is a bipolar vague Q-set in X if BVInt(BVCl(A)) = BVCl(BVInt(A)).

Proposition 3.29: For a bipolar vague open set, A in (X, BV_{τ}) the following conditions are equivalent:

(i) A is a bipolar vague closed set in (X, BV_{τ}) ,

(ii) A is a bipolar vague α generalized closed set and bipolar vague Q-set in (X, BV_{τ}).

Proof: (i) \Rightarrow (ii). Since A is a bipolar vague closed set, it is a bipolar vague α generalized closed set in (X, BV_{τ}). Now, BVInt(BVCl(A)) = BVInt(A) = A = BVCl(A) = BVCl(BVInt(A)), by hypothesis. Hence A is a bipolar vague Q-set in (X, BV_{τ}).

(ii) \Rightarrow (i). Since A is a bipolar vague open set and a bipolar vague α generalized closed set in (X, BV_{τ}), by Proposition 3.27, A is a bipolar vague regular-open set in (X, BV_{τ}). Therefore, A = BVInt(BVCl(A)) = BVCl(BVInt(A)) = BVCl(A), by hypothesis. Hence A is a bipolar vague closed set in (X, BV_{τ}).

Proposition 3.30: Let (X, BV_{τ}) be a bipolar vague topological space. Then for every A belongs to bipolar vague α generalized open set in X and for every B belongs to bipolar vague set in X, $BV_{\alpha}Int(A) \subseteq B \subseteq A$ implies B belongs to bipolar vague α generalized open set in X.

Proof: Let A be any bipolar vague α generalized open set in X and B be any bipolar vague set in X. By hypothesis, $BV_{\alpha}Int(A) \subseteq B \subseteq A$. Then A^c is a bipolar vague α generalized closed set in X and A^c \subseteq B^c \subseteq $BV_{\alpha}Cl(A^c)$. By Proposition 3.24, B^c is a bipolar vague α generalized closed set in (X, BV_{τ}) . Therefore, B is a bipolar vague α generalized open set in (X, BV_{τ}) . Hence B belongs to bipolar vague α generalized open set in X.

Proposition 3.31: Let (X, BV_{τ}) be a bipolar vague topological space. Then for every A belongs to bipolar vague set in X and for every B belongs to bipolar vague semi-open set in X, $B \subseteq A \subseteq BVInt(BVCl(B))$ implies A belongs to bipolar vague α generalized open set in X.

Proof: Let B be a bipolar vague semi-open set in (X, BV_{τ}) . Then B \subseteq BVCl(BVInt(B)). By hypothesis, A \subseteq BVInt(BVCl(B)) \subseteq BVInt(BVCl(BVCl(BVInt(B)))) \subseteq BVInt(BVCl(BVInt(B))) \subseteq BVInt(BVCl(BVInt(A))). Therefore, A is a bipolar vague α -open set and by Proposition 3.17, A is a bipolar vague α generalized open set in (X, BV_{τ}) . Hence A belongs to bipolar vague α generalized open set in X.

Proposition 3.32: A bipolar vague set A of a bipolar vague topological space (X, BV_{τ}) is a bipolar vague α generalized open set in (X, BV_{τ}) if and only if $F \subseteq BV_{\alpha}Int(A)$ whenever F is a bipolar vague closed set in (X, BV_{τ}) and $F \subseteq A$.

Proof: Necessity: Suppose A is a bipolar vague α generalized open set in (X, BV_{τ}) . Let F be a bipolar vague closed set in (X, BV_{τ}) such that $F \subseteq A$. Then F^c is a bipolar vague open set and $A^c \subseteq F^c$. By hypothesis A^c is a bipolar vague α generalized closed set in (X, BV_{τ}) , we have $BV_{\alpha}Cl(Cl(A)) \subseteq F^c$. Therefore, $F \subseteq BV_{\alpha}Int(A)$.

Sufficiency: Let U be a bipolar vague open set in (X, BV_{τ}) such that $A^{c} \subseteq U$. By hypothesis, $U^{c} \subseteq BV_{\alpha}$ Int(A). Therefore, BV_{α} Cl(Cl(A)) $\subseteq U$ and A^{c} is an bipolar vague α generalized closed set in (X, BV_{τ}) . Hence A is a bipolar vague α generalized open set in (X, BV_{τ}) . **References:**

1. Arockiarani.I and Cicily Flora.S., Positive Implicative bipolar vague ideals in BCK-algebras, International research journal of pure algebra, 2016, 1-7.

- 2. Atanassov.K., Intuitionistic fuzzy sets, Fuzzy sets and systems, 1986, 87-96.
- 3. Chang.C.L., Fuzzy topological spaces, J Math. Anal. Appl, 1968, 182-190.
- 4. Cicily Flora.S and Arockiarani.I., A new class of Generalized bipolar vague sets, International journal of information research and review, 2016, 3058-3065.
- 5. Cicily Flora.S and Arockiarani.I., On bipolar vague ring in baire spaces, Bulletin of mathematics and statistics research, 2017, 1-9.
- 6. Coker.D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 1997, 81-89.
- 7. Gau.W.L and D.J.Buehrer., Vague sets, IEEE Trans. Systems Man and Cybernet, 1993, 610-614.
- 8. Lee.K.M., Bipolar-valued fuzzy sets and their operations, Proc. Int. Conf. on Intelligent technologies, Bangkok, Thailand, 2000, 307-312.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

- 9. Levine.N., Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, 1970, 89-96.
- 10. Zadeh.L.A., Fuzzy sets, Information and control, 1965, 338-335.