
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

 JOURNAL OF BASIC SCIENCE AND ENGINEERING

168

UNSUPERVISED MACHINE LEARNING FOR FEEDBACK LOOP PROCESSING IN
COGNITIVE DEVOPS SETTINGS

Hemanth Swamy

Senior Software Engineer
Motorola Solutions

hemanth.swamy1@motorolasolutions.com

Abstract—Agile development and quick adaptation to new needs are two of the most
pressing issues facing software applications and systems today. The need for separate
deployments, such as in DevOps, arises from this. A system's quality, particularly when it
is continually built, is greatly affected by continuous monitoring and feedback creation,
which are essential components of DevOps because of the short release cycles and flexibility
they include. To achieve this goal, we offer a system for feedback that integrates data from
operations and development. This system can identify patterns, spot unusual behavior, and
feed that information back into development, providing a more thorough investigation into
production anomalies. In order to achieve this goal, we describe the dataset using two
unsupervised machine learning approaches, k-means clustering and archetypal analysis.
Based on the findings, we classify new data points as normal or abnormal. An application is
being built inside a big industrial organization that provides real-time data for testing and
evaluation purposes. This application is designed to support the feedback loop, which
consists of continuous development, planning, deployment, and monitoring.

Keywords—Feedback loop; Cognitive DevOps; Unsupervised Machine learning; Software
quality; Improved Fuzzy C Means

I. Introduction
Research into non-invasive Brain-Computer Interfaces (BCI) has shown that error-related
potentials (ErrPs) are beneficial for control in the last several decades. However, these brain
correlates concerning merely the discrete sense of mistakes continue to be an issue when trying
to continually correct for the incorrect action of an end result (such a robot arm) in a BCI [1].
The capacity of the DevOps phenomenon to provide continuous value delivery is a major factor
in its rising popularity. Similar to any other software process shift or set of technical practices,
DevOps isn't without its share of difficulties [2]. Social settings, cognitive mediations, brain
processes, and behavior are all layers of organisms that are involved in culture's complex
feedback loops. Some brain pathways are shaped by culturally dependent social processes,
according to recent neuroscience research. Potentially new understandings of mental diseases
could emerge from research on the impact of cultural setting on brain processes. Novel
approaches from the neurosciences provide fresh perspectives on how to evaluate the cultural
influences on psychological well-being and disease [3].

JOURNAL OF BASIC SCIENCE AND ENGINEERING

169
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

 An integral aspect of the BCI loop, feedback tells the user if their cognitive efforts were fruitful.
Theoretically, the feedback influences the user's capacity to learn how to operate the BCI.
Facilitation of neuroplasticity is linked to the feedback of a BCI loop in the area of
neurorehabilitation. It is not apparent whether a BCI loop allows for any facilitation, however,
since techniques like motor visualization, tactile stimulation, and movement observation all have
therapeutic effects on their own [4]. Security flaws are common in today's software systems
because of the prevalence of commercial off-the-shelf (COTS) and legacy components. To keep
up with the rapid speed of software delivery, verification techniques artefacts should be updated
often, according to the contemporary approach of addressing ever-changing circumstances,
DevOps [5]. Software development has entered a new phase of radical change with the fast
adoption of DevOps as well as Continuous Integration/Continuous Deployment (CI/CD), which
has improved release efficiency and simplified procedures. Integrating Dev and Ops into a single
DevOps architecture allows for a software lifecycle that is more responsive and synergistic.
Concurrent integration and continuous delivery (CI/CD) automation promises faster feedback
loops along with more frequent feature releases, which speeds up the software release cycle [6].
An intriguing and quickly developing area of neuroscience is the development and refinement of
closed-loop brain stimulation devices that do not need invasive procedures. Earlier suggestions
for closing the feedback looping process in adaptive neurostimulation processes included using
the patient's own rhythmic processes—like heart rate, respiration rate, as well as
electroencephalogram (EEG) rhythms—to modulate the parameters of online automatic sensory
stimulation [7]. From development to activities, including input from both, the quality and
behavior of a system should be regularly monitored. The next step is to incorporate the
comments into the development cycle again. Since the majority of developers are blissfully
unaware of the myriad of things occurring in the manufacturing environment at any one time, the
feedback loop is specifically designed to proactively identify harmful tendencies. An important
part of DevOps managing projects is feedback loops. A longer feedback loop increases the risk
of a subpar product or delays its delivery. It is critical for DevOps teams to comprehend the
context of feedback loops as they work to bridge the gap between operations and development.
Knowing what loops are currently in place and how to prevent accidental feedback loops are the
first steps in optimizing feedback loops. In addition to concentrating on feedback loops based on
humans, CI and CD techniques may substantially accelerate them. Injecting installations that
caused undesirable behavior into the application allowed us to test the feedback system's
anomaly detection methodology.
 This work makes a double contribution: To start, we present a system that can use real-world
data to analyze both the development and production environments for trends and novel forms of
feedback by combining characteristics extracted from both. Furthermore, the data set is subjected
to the suggested unsupervised machine learning methods, which not only prove that our notion
can be implemented in reality but also provide a distinct picture of the data set.
 The rest of the article is organized like this: Section II provides a synopsis of the relevant
literature, while parts III and IV elaborate on the central idea and its practical application.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

170
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

Section V then presents the results of our system assessment, and Section VI concludes the
whole thing.

II. Related Work
 Quick feedback loops and frequent software changes sent to production are key tenets of the
DevOps methodology. Particularly in terms of performance, this is at odds alongside software
quality assurance efforts. For example, in order to acquire findings that are statistically
significant, performance assessment operations, like load testing [9], take a long period. To learn
more about the approaches taken to performance in enterprise-level DevOps environments, we
ran an industrial survey. The application of model-based methodologies, the level of detail of the
performance data acquired, the frequency of running performance assessments, and the tools
employed were of great interest to us. Performance evaluation in DevOps is not widely used due
to the complexity involved in engineering methodologies and technologies, according to the
study results. These respondents hail from a diverse range of industries. Our findings suggest that
effectiveness analysis tools should be intuitive and straightforward to include into the DevOps
pipeline if they want to gain traction among practitioners. Microservices is an emerging style of
architecture that we attempted to use to solve the architectural issues. The system is now more
resistant to design erosion, more easily modifiable, and easier to deploy. Concurrently, I saw
additional difficulties related to testing, technological variety, shifting contracts among services,
and a growth in the number of services overall. I go over several real-world ways to deal with
these emerging problems, explain where Microservices aren't the best option, and point out
where we need further study [10]. Factors impacting its execution are examined empirically in
this work. It details the results of a comprehensive exploration case study that looked at how a
product development company in New Zealand used DevOps. The research included in-depth
interviews with six seasoned software engineers who were asked to track and reflect on the
adoption of DevOps methods and concepts over time. The case study found that by
implementing DevOps techniques, the deployment frequency increased from 30 releases per
month to 120 releases per month on average, and there was a significant improvement in the
level of natural communication and cooperation between the IT teams in development and
operations. Our research shows that in order to reap the advantages of DevOps, certain
technology enablers must be in place, such as an automated pipeline and cross-functional
organizational frameworks [11]. Companies are using agile and lean software building practices
to improve software quality and speed up the software development process. A combination of
the words "development" and "operations," the name "DevOps" serves as an umbrella word to
encompass their endeavors. We detail the methods that businesses use to adopt DevOps and the
results that they get in this article. To begin, we provide a brief overview of the findings from a
literature analysis that we conducted to find out what other scholars have said on DevOps. The
findings of an exploratory research based on interviews with six firms spanning different sectors
and ranging in size are subsequently detailed. Our research showed that when implementing

JOURNAL OF BASIC SCIENCE AND ENGINEERING

171
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

DevOps, all firms had favorable experiences with very few difficulties [12]. The goal of the
software engineering practices that make up DevOps is to reduce the time it takes to implement
changes to software design. Using infrastructure-as-code, or creating a blueprint with
deployment specs prepared for cloud orchestration, is one of these strategies. In this abstract, we
will take a quick look at the many abstractions and elements that go into creating and
maintaining that blueprint, with a focus on the OASIS "Topology as well as Orchestration
Specification for Cloud Applications" (TOSCA) standard that has been adopted by 60+ major
industrial players across the globe [13]. The DevOps methodology is being used by software
teams of every size to implement the microservice model and speed up application delivery. The
usage of microservices is growing at a fast pace, according to industry trends. Nevertheless, there
are difficulties associated with microservices. Autonomic concepts and solutions are required for
large-scale deployment, which increases complexity and the likelihood of failure [14].
Researchers and practitioners in software engineering are increasingly interested in DevOps and
continuous techniques. However, there is a lot of ambiguity, interchangeability, and uneven
usage of the terminology. Our analysis of the published literature on continuous practices that
DevOps reveals that the words are often used interchangeably, which hinders our capacity to
evaluate these practices, their consequences, and the interactions between them. We argue that
this lack of clarity and understanding is detrimental to the community as a whole. We provide
recommendations to writers to assist them in reducing ambiguity in their writings based on this
examination of assertions made by often referenced community sources, and our own study and
practice with these ideas. Furthermore, we provide definitions that aim to represent the common
understanding of the words while also separating them from each other [15].

III. Feedback Loop Processing in DevOps
In DevOps, feedback loops are essential for enhancing the quality of software development.
Additionally, they guarantee the timely delivery of findings from development, testing, and
deployment. The developers create the software and hand it over to the operations team, who
work together as the DevOps team—a feedback loop in action. In order to identify bugs that the
growth team has to address, the software is tested by the operations team. The feedback loop
begins when the developers make the modifications and send them to the functional team. In the
realm of DevOps, feedback loops are very essential. They guarantee high-quality and timely
software deployment by offering several perks.
Types of DevOps Feedback Loops
Your DevOps process's feedback loop selection should be based on the loops' intended use.
Feedback loops come in two varieties:

JOURNAL OF BASIC SCIENCE AND ENGINEERING

172
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

Input System Output Input System Output

Types Of Feedback Loops

Positive Negative
Positive Feedback Negative Feedback

Reinforcing feedback loop (positive)

A positive feedback loop whose output increases the strength of the input is called a reinforcing
or amplified feedback loop. Because the feedback loop alters only in one way, the total
magnitude grows. It is the goal of the loop to improve the process. As an example, the operations
team may easily deploy the code to reality after the development team develops high-quality
software.

● Balancing Feedback Loop (negative)
In a balanced feedback loop, the input is decreased by the output, creating a negative feedback
loop. The teams in development and operations collaborate on this to restore system balance by
slowing down the process. As an example, software is not released to production after
development if the production team finds a few issues. The developer makes the necessary
revisions to the procedure, resolves the errors, and commits the code once again. To increase the
quality of software development and delivery, concentrate on tightening or shutting the feedback
loop, regardless of the kind of loop.

 An integral part of the DevOps methodology is the feedback loop. Through a series of well-
defined steps, they guarantee that initiatives are simplified in a unified manner. Teams work
together and communicate at each step to make sure there aren't any problems. We regularly
review features once they are implemented based on real-world input from consumers.
Permitting items to undergo several revisions in order to enhance their use and profitability.
Users will also enjoy reduced downtime thanks to the pipeline's automated change pushes and
ongoing monitoring.
Customer feedback
If you want to know how good and valuable your online goods are, look no further than customer
reviews. Assumptions and hypotheses may be validated and the target audience's wants,
preferences, as well as pain points can be better understood. Many methods exist for gathering

JOURNAL OF BASIC SCIENCE AND ENGINEERING

173
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

consumer opinions, including questionnaires, in-person meetings, online reviews and ratings,
data analysis, and social media. Iterating on features, prioritizing the backlog, and improving the
user experience may all be aided by customer input.
User feedback
User feedback delves deeper into the specifics of how online goods are used and interpreted by
the end users, offering a more targeted kind of consumer feedback. In order to assess the online
products' usability, accessibility, and functioning, and to find any mistakes, bugs, or other
problems that impact user happiness, it is helpful to collect feedback from users. User research,
comments from users tools, user testing, and monitoring user behavior are some of the ways that
user input may be gathered. Site speed, security, and optimization may all benefit from user
input.
Code feedback
Both the code itself and code quality methods and tools may provide valuable input, which is
referred to as code feedback. Code that follows the highest standards and best practices in web
development, is consistent, legible, and maintainable is more likely to get positive comments.
Code reviews, analysis, formatting, linting, and documentation are just a few of the ways that
code feedback may be gathered. Refactoring, decreasing technical debt, and avoiding code
smells are all possible outcomes of code feedback.
Test feedback
The feedback that is derived from testing procedures, testing instruments, test findings, and test
reports is known as test feedback. In order to ensure that the code is up to par in terms of
functionality, requirements, and quality standards, it is helpful to have test feedback. Several
forms of testing—unit, integration, functional, performance, and security—are available for
gathering test input. Code debugging, test coverage enhancement, and test automation may all
benefit from test input.
Deployment feedback
Feedback on a deployment may be derived from a variety of sources, including the tools and
pipelines used for the deployment, the results of the deployment, and the metrics measured by
them. You can track and quantify how code changes affect online products and environments
using deployment feedback. Several metrics, including deployment time, success rate, and
failure rate, may be used to gather deployment feedback. Reducing deployment risks, increasing
deployment value, and streamlining the deployment process are all possible with the aid of
deployment feedback.

IV. Proposed WOrk
A. System Model
In order to find commonalities, abnormalities, produce feedback, and feed that input back into
development, we built an input system that integrates data from operations with development.
The fundamental idea behind our method is shown in Figure 1. The data that is now accessible is

JOURNAL OF BASIC SCIENCE AND ENGINEERING

174
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

first retrieved from a constantly evolving application and stored in the database of the feedback
system. To begin, several feature selection strategies are used to identify the important properties
that will be used in subsequent analysis.
 To further represent the current data, iterative applications of machine learning techniques
(described in the step "Clustering") are next made. Data points are checked for suspicious
activity and added to the feedback database with a behavior tag as soon as fresh data is
generated. In a web app, all the data that is accessible is extracted and displayed. In addition, the
ticket system generates an alert token anytime anything out of the ordinary happens, which gives
the developer valuable insight into where the mistake may be coming from.

Feedback Database
(Historical Data)

Feature seclection

Data Analysis

Suspicious Activity Detection

 Application + Alert Generated with
Token

Development

IOT Application

Current data

F
ee

db
ac

k

Data
Scientist

Application
Developer

IoT Users

ML Model

Fig. 1. Overview and concept of the feedback systemB. Data Collection & Feature Selection
An internet of things (IoT) app built for the express purpose of proving DevOps techniques
inside a big industrial organization provides the data used by our prototype. A number of edge
devices collect and transmit sensor data from various places; a dashboard with its backend help
to display this data. A Raspberry Pi and a temperature sensor are the components of each edge
device, which measures the ambient temperature. The temperature and other system data are sent
to the backend as well as saved in a database every five seconds. Processing unit utilisation (%),
memory utilisation (%), networks transfer rate (B/s), as well as disk I/O (%) make up the four
areas of system data. Each subproject, which may only be allocated to one part of the system,
experiences an automated deployment process and is automatically activated throughout the

JOURNAL OF BASIC SCIENCE AND ENGINEERING

175
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

system's continuous development. In order to match every system data category to its associated
development data, the entries are separated into deployment segments.
 We add up each segment's highest, lowest, mean, and difference in between the two. There is a
constant flow of fresh details about the application's development as it is a continual process.
Thus, by examining the repository commits, we are able to trace the code modifications for every
deployment. In particular, the Git repository administrator made accessible the following
features: the kind of commit, the quantity of changes per deployment, the amount of files added
or deleted per commit, and the amount of lines added or deleted each commit. It is possible to
directly map the two kinds of data in order to determine which code modifications resulted in
which system data, as they may be separated according to deployments. The application's tools
and database (such as the ongoing deployment tool and the Git repository manager)
automatically and repeatedly extract the data needed by the feedback system, map it into the
appropriate format, and store it in the database of the feedback system. The characteristics
discussed in this section may be unique to this application, but the idea is generalizable to any
application with measurable characteristics.
C. Improved Fuzzy C Means Clustering for Data Analysis
New understandings may be derived for the programmers from the data analysis. Therefore, a
web app tells you how the app is doing right now, when it was last deployed, and anything that
would indicate suspicious activity. The details page for each deployment gives you more
information including the time stamp, the name of the project, the values of system data, the kind
of deployment, the amount of commits, the amount of files added and deleted, and the amount of
lines added and deleted.
The cluster is built using an approach called Upgraded Fuzzy C-Means Cluster (improved-
FCM). When creating the cluster, this algorithm takes into account factors like past data. The
majority of the time, the FCM method will increase latency by picking nodes at random to
construct clusters. Our proposed Improved-FCM chooses the initial cluster based on the density
of the Internet of Things setting at a given location, resulting in reduced latency. Here, Internet
of Things (application features are clustered, producing data for processing. Applying the
improved FCM clustering technique improves the outcomes of both the initial center decision
and the target function. To do this, it improves performance by comparing random options. The
membership function used for the Improved FCM is defined as follows:

 𝑀(𝑝, 𝑞) = ∑ ⬚௡
௜ୀଵ ∑ ⬚௖

௝ୀଵ 𝑝௜௝
ఙ 𝑆௜௝ (13)

Where "d" denotes the parameters and "M" denotes the group's function (𝑑, 𝑙ௗ, 𝑟, 𝐸௥)For the
clustered Internet of Things sensors, the membership function incorporates all membership levels
of the IoT sensors.

∑ ⬚௖
௝ୀଵ 𝑝௜௝ = 1 𝑖 = 1,2, … . . 𝑛 (14)

For clustering, the regional density that covers the area dictates which point in space is
chosen as the center. Determining the average density between the sensors should be your first
step. This density may be described in the following way,

JOURNAL OF BASIC SCIENCE AND ENGINEERING

176
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

 𝐴𝑑 =
𝑛

𝜋
൬

𝑑௠௔௫

2
൰

ିଶ

 (15)

A definition of the local frequency calculation is given by the following statement:

 𝑙ௗ =
௡

గ൬
ೝᇲశೝ

మ
൰

మ

ିగ൬
ೝᇲ

మ
൰

మ (16)

The priori parameters used to determine the starting center are denoted by n, and r is the minimal
value of the radius in this context. Using this method, we can prevent the random selection.
Center selection based on calculation of the local densities reduces the number of technique
iterations. Finally, here is a description of how we compute the membership degree using the
area and distance densities,

 𝑀(𝑝, 𝑞, 𝑙ௗ) = ∑ ⬚௖
௝ୀଵ ∑ ⬚௡

௜ୀଵ 𝑝௜௝
ఙ ൬

ௗ೔ೕ

௟೏೔ೕ
൰

ଶ

 (17)

JOURNAL OF BASIC SCIENCE AND ENGINEERING

177
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

Start

Select initialize class center

Calculate membership function based on the cluster
parameters

Calculate cluster center based on the local density and
average density

Calculate final membership degree based on the local
density threshold

Set Ld=1

If (ld<Ad)

Find final class centers and construct number of
clusters

Set 1+Ld

End

Fig.3 Overall flowchart of local density based clusteringWhere, 𝑙ௗThis shows the local density
determined from the ith center of the kth sensor. The difficulty of collecting and classifying
characteristics is significantly reduced by grouping the Internet of Things devices based on their
proximity to one another and local density. If the density of the area is less than the average size,
then the local density value should be set to 1. If the quantity of the local density is higher than
the average density 1+l_d, which is defined as follows, then the number of the local density will
correspond to the specified local density,

JOURNAL OF BASIC SCIENCE AND ENGINEERING

178
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

𝑙ௗ = {1, 𝑙ௗ௜௝ ≤ 𝐴𝑑 1 + 𝑙ௗ௜௝ , 𝑙ௗ௜௝ > 𝐴𝑑 (18)

Pseudocode for Improved FCM
1. Input: Devices 𝐷 = {𝑑1, 𝑑2. . 𝑑𝑛}
2. Output: Clusters 𝐶 = {𝑐1, … . , 𝑐𝑛}
3. Begin
4. //Calculate initial cluster centers and local

density
5. Initialize 𝐷 = {𝑑1, 𝑑2. . 𝑑𝑛}
6. for all devices do
7. Compute 𝑑ata points1
8. Compute 𝑑ata points2
9. Compute 𝑑ata points3
10. Compute 𝑑ata pointsn
11. Select minimum distance between 𝐷 for

calculate 𝑙ௗ
12. if (𝑙ௗ> 𝐴𝑑)
13. Set 𝑖 = 𝑖 + 1
14. else
15. Calculate the final membership degree

and cluster center using eqn ()
16. end if
17. Compute local density threshold using

eqn()
18. Construct cluster {𝑐1, 𝑐2 … . 𝑐𝑛}
19. 𝐶 ← {𝑐1, 𝑐2 … . 𝑐𝑛}
20. end for
21. Return C
22. end

SERVICE DELIVERY PERFORMANCE CLUSTERS

Every group has its own unique way of measuring stability and throughput, which shows how
well they're doing. Typically, this will produce four groups.

Performance
level

Lead time Deployment frequency Change failure
rate

Mean time to
resolve

Elite < 1 hour Multiple times per day 0-15% < 1 hour
High 1 day - 1

week
Weekly to monthly 16-30% < 1 day

Medium 1-6 months Monthly to biannually 16-30% 1 day - 1 week

JOURNAL OF BASIC SCIENCE AND ENGINEERING

179
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

Low > 6 months Fewer than once every 6
months

16-30% > 6 months

They were compared to the clusters in terms of service delivery efficiency using performance
and stability metrics in order to identify potential improvement areas.

 New understandings may be derived for the programmers from the data analysis. Therefore, a
web app tells you how the app is doing right now, when it was last deployed, and anything that
would indicate suspicious activity. There is a detail view for every deployment that gives you
more information like the time stamp, the name of the project, the values of the system data, the
kind of deployment, the amount of commits, the amount of files added and deleted, and the
amount of lines added and deleted. It also creates eight graphs that show the data representation
using archetypes and clusters, and it shows where the current deployment is in relation to the
previous deployments and how it stands out. Anomalies that are found are shown by highlighting
the fields that are generating the anomaly. One probable reason for its detection might be the
deployment's unusual behavior compared to the others, which can be easily understood in this
fashion. Furthermore, should a mistake occur, a token will be immediately generated inside the
token system. The purpose of this document is to assist the programmer in identifying where the
program is crashing. Tokenizing important details on the issue and its potential causes is
necessary for this to occur. The feedback system gathers information on the (sub-) project, the
time and date, the error kind (such as a spike in CPU use), and the files that may have been
updated, which might explain the behavior change. It then automatically generates the token
after converting the data to a written and comprehensible format.

V. Results & Discussion
The system that is being examined is the backend system of a public transportation app that
processes money and tickets. Built and managed via the cloud, this system makes use of DevOps
practices and Microsoft products. An architecture based on microservices is being considered for
the system. With Microsoft's data platform, Azure Monitor, we keep tabs on the health of every
service. Azure Monitor is a platform that unifies data collection, processing, alerting, and
visualization from various Azure services and applications. Metrics and logs are both accessible
under this data platform. The numerical numbers that represent the observations of a certain
system within a specified time stamp are called metrics. Numerical and textual data are used to
represent logs, which reflect events that occurred at a certain instant in time. When anything out
of the ordinary occurs in the monitored resources' data, alert rules may be built up using either
metrics or logs. As can be seen in Table 2, the case firm has put in place basic criteria to identify
500 error requests, unexpected dependency call raises, and unsuccessful HTTP requests.
Notifications are delivered to a specific Slack channel or by email when certain conditions are
fulfilled, which triggers alarms. The operational data displayed in Table 2 is only a fraction of

JOURNAL OF BASIC SCIENCE AND ENGINEERING

180
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

the total data accessible in Azure Monitor. However, for the sake of this study, we will be
concentrating on the chosen logs and metrics. Metrics and logs pertaining to the data kinds used
for establishing present alert rules and for debugging in the event of anomaly detection were
selected from among all available observations of various system components. All twenty
services have the alert rules stated in Table 2, and two platforms get messages on heightened
alarms. The Slack channel gets notifications when there's an internal server error 500, and email
gets notifications when there's an unexpected increase in dependency failures and unsuccessful
requests. There have been many reports of difficulties from the development team about the
management and response to alerts that have been triggered using this setup. In addition, a
deluge of irrelevant warnings makes their development environment unpredictable, which makes
ordinary work more difficult.
Table.2. Features for Feedback Loop Processing

Features for
feedback
information

Type of
features

Alerts
configured

System
features

No of requests (1). Server
Error Message
500
(2). Failed
HTTP
Requests
(3). High
processing
time
(4). Flooded
requests

CPU Time
Errors HTTP
Server Errors
Response Time

Log features Requests (1). Exception
errors
(2). Void
Request

Exceptions
Traces

Application
features

Server
Exceptions

(1).
Dependency
failures
(2). Service not
matched for
the given
request

Exceptions
Dependency
features
Failed
Requests

JOURNAL OF BASIC SCIENCE AND ENGINEERING

181
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

By comparing our prototype to the pure unsupervised ML approach for finding outliers, which
signify alerts, in multidimensional unlabeled data sets, we were able to verify our model and
existing one, namely multivariate anomaly detection (MAD). For the implementation, we stuck
with the PyOD Python toolkit and went with the DevOps application service provider approach.

Fig.4. Accuracy Performance

Fig.5. F-score Performance
Both models are in sync using DevOps and the Feedback Loop system of controls technologies,
as shown in the results of the experiment (Fig.).
The F1-score, which is a harmonic mean of recall and precision that indicates a model's
accuracy, is more than 0.9 for both the Devops model and the ML model. On the other hand,
pure unsupervised ML may detect when there is a mismatch between the weight of some
services with their metrics and the target classes.
In addition, we demonstrated that the systems' imbalanced operations information and system-
specific traits, which are essential for detecting both minor and major failures, are better captured
by the tailored unsupervised machine learning approach. Consequently, the feedback data
collected has strengthened the link between development and operations and may now notify
developers of any issues.

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ac
cu

ra
cy

 (%
)

Alert Ratio
Multivariate ML Proposed

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F-
sc

or
e

Alert Ratio
Multivariate ML Proposed

JOURNAL OF BASIC SCIENCE AND ENGINEERING

182
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

VI. Conclusion
The feedback system may provide fresh perspectives on an operational system by merging data
from operations and development, taking development modifications into account. If an issue
does arise, the system can identify it, locate its source inside the program, and provide
developers with useful feedback. This method makes it possible for the DevOps feedback
process to be enabled by facilitating a data cycle between the development environment and the
production environment. Applying our approach to a real-world application development
scenario allowed us to assess it. Any measurable information may be utilized as a characteristic
in the feedback system, thereby expanding its applicability. Additionally, the algorithms are not
restricted to a certain set of features, making the feedback system suitable for other applications
as well. While there have been some improvements, there are still some gaps that might be filled
in the future. Take the classification methods as an example; they need a substantial quantity of
data. This means that thresholds must be employed until there is enough data to use the feedback
system at the beginning of the design phase. Overhead due to data volume is another well-known
issue with monitoring systems. Performance problems may arise during data transmission and
database storage. It is possible to tailor the interval between measurements so that only essential
data points are transmitted and saved in the database by examining various intervals. In addition,
it might be helpful to automatically off monitoring points associated with characteristics that
aren't utilized in the analysis since they weren't selected. Data quality is the ultimate determinant
of feedback system quality and feedback substance. Developers incur extra expenses due to the
fact that the gathering and storage of operations data is application-specific and must be
performed by them. In order to reduce the inhibition level, more study might look at ways to help
this process; for example, it could consider feedback optimization with all the necessary facts
and information.

References
1. Medina, O., & Schumann, E. (2018). Getting up and Running: Set up Your Environment.
2. Fröschle, H. (2017). DevOps. HMD Praxis der Wirtschaftsinformatik, 54, 171-172.
3. Jabbari, R., Ali, N.B., Petersen, K., &Tanveer, B. (2018). Towards a benefits dependency

network for DevOps based on a systematic literature review. Journal of Software: Evolution
and Process, 30.

4. Luz, W.P., Pinto, G.H., &Bonifácio, R. (2018). Building a collaborative culture: a grounded
theory of well succeeded devops adoption in practice. Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement.

5. Sánchez-Gordón, M., &Colomo‐Palacios, R. (2018). Characterizing DevOps Culture: A
Systematic Literature Review.

6. Glasgow, R.E., &Estabrooks, P. (2018). Pragmatic Applications of RE-AIM for Health Care
Initiatives in Community and Clinical Settings. Preventing Chronic Disease, 15.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

183
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

7. Perera, P., Silva, R.T., &Perera, I. (2017). Improve software quality through practicing
DevOps. 2017 Seventeenth International Conference on Advances in ICT for Emerging
Regions (ICTer), 1-6.

8. Bass, L.J. (2017). The Software Architect and DevOps. IEEE Software, 35, 8-10.

9. Bezemer, C., Eismann, S., Ferme, V., Grohmann, J., Heinrich, R., Jamshidi, P., Shang, W.,

Hoorn, A.V., Villavicencio, M., Walter, J., &Willnecker, F. (2018). How is Performance
Addressed in DevOps? Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering.

10. Chen, L. (2018). Microservices: Architecting for Continuous Delivery and DevOps. 2018
IEEE International Conference on Software Architecture (ICSA), 39-397.

11. Senapathi, M., Buchan, J., & Osman, H. (2018). DevOps Capabilities, Practices, and
Challenges: Insights from a Case Study. Proceedings of the 22nd International Conference on
Evaluation and Assessment in Software Engineering 2018.

12. Erich, F., Amrit, C., &Daneva, M. (2017). A qualitative study of DevOps usage in practice.
Journal of Software: Evolution and Process, 29.

13. Artac, M., Borovsak, T., Nitto, E.D., Guerriero, M., &Tamburri, D.A. (2017). DevOps:
Introducing Infrastructure-as-Code. 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), 497-498.

14. Pallis, G., Trihinas, D., Tryfonos, A., &Dikaiakos, M.D. (2018). DevOps as a Service:
Pushing the Boundaries of Microservice Adoption. IEEE Internet Computing, 22, 65-71.

15. Ståhl, D., Mårtensson, T., & Bosch, J. (2017). Continuous practices and devops: beyond the
buzz, what does it all mean? 2017 43rd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), 440-448.

