
Vol. 18, No. 1, (2021)
ISSN: 1005-0930

 JOURNAL OF BASIC SCIENCE AND ENGINEERING

168

SECURING CI/CD PIPELINES USING AUTOMATED ENDPOINT SECURITY
HARDENING

Sagar Aghera

Independent Researcher, Sr Staff Engineer in Test, Netskope Inc, USA
 ORCID: 0009-0007-5561-7250

ABSTRACT

This research emphasizes the need to secure CI/CD pipelines with automatic endpoint security
hardening. Static analysis, dynamic analysis, and configuration management technologies are
evaluated to determine the best security risk mitigation measures. SonarQube and Checkmarks
target code-level vulnerabilities, while OWASP ZAP and Burp Suite target runtime threats.
Configuration management systems like Ansible, Puppet, and Chef ensure uniform infrastructure
security. Combining all three methods into one configuration management solution provides the
most comprehensive security, according to comparative studies. The future of pipeline security
should include AI and machine learning integration, real-time threat intelligence, and DevSecOps
collaboration.

Keywords: DevSecOps, CI/CD pipelines, endpoint security hardening, static/dynamic analysis,
configuration management, AI, machine learning, and threat intelligence.

I. INTRODUCTION
__

Modern software development has benefited greatly from the widespread use of Continuous
Integration and Continuous Deployment (CI/CD) pipelines, which have expedited the software
delivery process and allowed for frequent and quick releases. Nevertheless, the ever-changing
nature of CI/CD setups brings about numerous security weaknesses, which in turn make them
appealing targets for cyber adversaries. The incidence of software supply chain attacks increased
by 430% between 2019 and 2020 [1], highlighting the necessity for strong security controls in
these pipelines.
A CI/CD pipeline includes code integration, automated testing, artifact storage, and production
deployment. Security issues arise at every level. During subsequent integration steps, malicious
code injection can undermine the system. Comprehensive security measures are needed since
CI/CD processes employ several third-party tools and dependencies, increasing the attack surface
[2].
Using automatic endpoint security hardening can reduce these attacks. This strategy automates
security policies, vulnerability identification, and threat mitigation across all CI/CD pipeline
endpoints. Automated hardening integrates security practices into every pipeline level, allowing
CI/CD systems to deploy quickly.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

169
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

The complexity of cyber threats emphasizes endpoint security hardening in CI/CD pipelines. 63%
of organizations reported CI/CD pipeline vulnerabilities-related data breaches, according to
the Ponemon Institute [3]. This data underscores the necessity for automated security solutions to
monitor and protect CI/CD installations all the time.

Static, dynamic, and configuration management processes are used to harden endpoint security in
CI/CD pipelines. Static analysis tools like SonarQube and Checkmarx can find security flaws in
source code without running it. Using dynamic analysis tools like Burp Suite and OWASP ZAP,
active programs may be scanned for security flaws in real time. Configuration management
solutions like Ansible, Puppet, and Chef enforce security configurations across all endpoints [4].

Fig 1.1: Components of Security Hardening

(“https://www.collidu.com/media/catalog/product/img/3/a/3a751394277d8161b7658750bec0c87
812fcacba81387b4812efd1b61d77a84b/security-hardening-slide4.png”)

Fig 1.2: The CI/CD Pipeline(“https://www.simform.com/wp-

content/uploads/2022/06/CICD.jpg”)

JOURNAL OF BASIC SCIENCE AND ENGINEERING

170
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

This research attempts to investigate how well these automated endpoint security hardening
methods work to secure pipelines used in continuous integration and delivery.

II. LITERATURE REVIEW

Introduction to CI/CD Pipeline Security

CI/CD pipelines are essential components of contemporary software development methodologies,
enabling swift and dependable product deployments. However, because these pipelines are so
intricately linked, they are rapidly becoming targets for cyberattacks. The need for strong security
measures is highlighted by studies showing that 21% of firms have had a security issue involving
their CI/CD pipelines [5].

Security Challenges in CI/CD Pipelines

Multifaceted security challenges exist in CI/CD pipelines. An important issue is the incorporation
of third-party components, which can introduce weaknesses into the pipeline. Sonatype's 2020
State of the Software Supply Chain report reveals that 10% of open-source components
downloaded by companies included documented security vulnerabilities [7]. In order to manage
third-party dependencies, it is imperative that strict security procedures be followed.

Moreover, the ever-changing nature of CI/CD setups adds complexity to conventional security
methods. Security solutions that can dynamically adjust to real-time code modifications and
deployments are necessary. Conventional security tools and procedures frequently struggle to keep
up with the fast-paced iterations commonly found in CI/CD processes, resulting in possible
security vulnerabilities [6].

Automated Endpoint Security Hardening

Automatic endpoint security hardening tackles CI/CD pipeline security issues well. This method
employs automated tools to enforce security policies, discover vulnerabilities, and fix all endpoints
during CI/CD. This section covers endpoint security automation basics.

1. Static Analysis :
These techniques uncover security problems in source code without executing it, enabling
early detection during development. SonarQube and Checkmarx are widely used because
they can detect SQL injection, XSS, and buffer overflows. Research shows that static
analysis in continuous integration/continuous deployment pipelines can reduce security
vulnerabilities by 60% before production [7].

JOURNAL OF BASIC SCIENCE AND ENGINEERING

171
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

2. Dynamic analysis :

Dynamic analysis involves testing an application in a runtime environment to identify
security flaws. Dynamic analysis tools like OWASP ZAP and Burp Suite simulate
application attacks and find vulnerabilities in static analysis misses. OWASP research
found that dynamic analysis tools can identify 85% of web application security
vulnerabilities [8].

3. Configuration Management :
Ansible, Puppet, and Chef technologies automate security configuration deployment and
management across CI/CD pipeline endpoints. These technologies reduce
misconfigurations, and common security breaches, and ensure security standards are
always enforced. Red Hat found that automated configuration management reduces
configuration-related security issues by 50% [9].

RESEARCH GAP

CI/CD pipelines have streamlined software development by enabling fast and reliable product
releases. The complexity of CI/CD pipelines makes them vulnerable to supply chain attacks and
the use of sensitive third-party components. Automation of endpoint security has improved, but
the current study has drawbacks.

 Evaluation Frameworks: There is a need for comprehensive frameworks to evaluate the
overall impact of various security measures in CI/CD settings.

 Cutting-edge Technologies: There is a scarcity of research on the use of machine learning
and artificial intelligence to improve the process of automated security strengthening.

 Real-time Adaptation: There is a requirement for security measures that can promptly
adjust to the fast-paced iterations of continuous integration and continuous deployment
(CI/CD).

 Effectiveness Metrics: Limited research has been done on particular metrics that can be
used to gauge how well automated security products work in CI/CD processes.

 Tool Integration: Insufficient investigation into the most effective amalgamation of static
analysis, dynamic analysis, and configuration management technologies.

 Practical Case Studies: Limited number of real-life examples showcasing the application
and efficacy of automated measures to strengthen endpoint security.

 Longitudinal research: There is a lack of comprehensive research that examines the long-
term effects of automated security hardening strategies on the security of CI/CD pipelines.

III. THREAT MODEL AND SECURITY CHALLENGES IN CI/CD PIPELINES

JOURNAL OF BASIC SCIENCE AND ENGINEERING

172
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

Threat Model

CI/CD pipelines, which are essential components of contemporary DevOps methodologies, are
specifically engineered to automate the software integration, testing, and deployment procedures.
Nonetheless, a number of security risks are introduced by the intricacy and connectivity of these
pipelines. The threat model that applies to CI/CD pipelines includes a range of attack vectors, such
as:

1. Source Code Repositories: These repositories are excellent targets for malware injectors.
Unauthorized repository access can introduce pipeline-wide vulnerabilities [10].

2. Build Systems: Build systems build and package code for deployment. Injecting malicious
payloads into software artifacts by compromising the build system can distribute
compromised software [11].

3. Artifact repositories: These repositories store deployment artifacts. If an artifact
repository is compromised, attackers can replace legitimate artifacts with malicious ones,
disrupting downstream deployments [12].

4. Deployment Systems: These systems send artifacts to production. A hacked deployment
system can cause unauthorized production changes, data breaches, and service outages
[13].

5. Third-party Dependencies: Unvetted and maintained third-party libraries and tools in
CI/CD pipelines might present risks. Sonatype's 2020 State of the Software Supply Chain
analysis found security vulnerabilities in 10% of business open-source components [5].

Security Challenges

Securing Continuous Integration/Continuous Deployment (CI/CD) pipelines requires tackling
many difficulties that come from their dynamic and distributed characteristics. Some of the main
security challenges are:

1. Continuous and Automated Nature: CI/CD pipelines are continuous and automated,
requiring seamless security without impacting development. Traditional security tools are
insufficient because they need manual intervention and lack continuous integration [2].

2. Rapid Iterations: CI/CD pipelines enable faster code updates and deployments. Unless
flaws are detected and repaired soon, this quickness may compromise security. Automating
security can greatly reduce CI/CD vulnerability discovery and patch times [14].

3. Complex Dependencies: Characterized by complex third-party library and tool
dependencies. These dependencies are hard to maintain and safeguard because one
component can break the process. Automated dependency management and vulnerability
scanning reduce this risk [15].

JOURNAL OF BASIC SCIENCE AND ENGINEERING

173
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

4. Infrastructure as Code (IaC): IaC automates infrastructure provisioning and
administration. IaC enhances consistency and reproducibility but creates security risks. IaC
script failures can harm infrastructure. Terraform and AWS CloudFormation need stringent
security checks to avoid misconfigurations [16].

5. Access Control/Least Privilege: Essential for CI/CD operations. Accessing pipeline
components without authority compromises security. Monitoring access logs and installing
robust controls are essential [17].

6. Insider Threats: Threats from insiders can compromise CI/CD pipelines. Employees or
contractors with pipeline access can damage or steal data. Reduce insider threats with
secure access, monitoring, and anomaly detection [18].

IV. AUTOMATED ENDPOINT SECURITY HARDENING TECHNIQUES AND
ALGORITHMS
__

CI/CD pipeline security protects source code repositories and deployment platforms with
automatic endpoint security hardening. Configuration management systems enforce endpoint
security standards, dynamic analysis analyses applications in runtime, and static analysis evaluates
source code for vulnerabilities. Process automation helps firms quickly detect and patch
vulnerabilities, guarantee security compliance, and secure their continuous integration and
distribution pipelines without sacrificing productivity.

1. Static Analysis

Algorithm:

Static analysis is the process of looking through source code without running it to find possible
security flaws. By identifying problems early in the development lifecycle, this strategy lowers the
likelihood that vulnerabilities will make their way into production systems.

Mathematical Model:

Let 𝐶 represent the codebase made up of 𝑛 source files.
𝐶 = {𝑓ଵ, 𝑓ଶ … , 𝑓௡}. Let 𝐿(𝑓௜) denote the set of lines in file 𝑓௜ . The set of potential vulnerabilities
𝑉 is given by:

𝑉 = ∏ {(𝑓௜

௡
௜ୀଵ , 𝑙௝) | 𝑙௝ 𝜖 𝐿(𝑓௜) and 𝑙௝ matches vulnerability pattern}

Applications:

JOURNAL OF BASIC SCIENCE AND ENGINEERING

174
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

 Early Vulnerability Detection: It minimizes the expense and labour of later vulnerability
fixes by identifying flaws during the development phase.

 Compliance: Verifies that the code complies with rules and security standards.

Fig 4.1: Static Analysis in Security Hardening

(“https://www.researchgate.net/publication/330738809/figure/fig1/AS:720808162902019@1548
865466491/Flow-Diagram-for-Static-Analysis.png”)

 Dynamic Analysis

Algorithm:

Security vulnerabilities are detected through dynamic analysis or dynamic risk analysis , which
evaluates the application in a runtime environment. This method exposes vulnerabilities that static
analysis could overlook by simulating assaults on the active application.

Mathematical Model:

Let A be the application under test and 𝑃 = { 𝑝ଵ, 𝑝ଶ, … , 𝑝௠}be the set of attack patterns. The set of
detected vulnerabilities V is given by:

𝑉 = ├ \{ (𝑝_𝑖, 𝑟_𝑖) ∣ 𝑝_𝑖 ∈ 𝑃 \𝑡𝑒𝑥𝑡{ 𝑎𝑛𝑑 } 𝑟_𝑖

= \𝑡𝑒𝑥𝑡{𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑎𝑡𝑡𝑎𝑐𝑘 }(𝐴, 𝑝_𝑖)\𝑡𝑒𝑥𝑡{ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦} ┤\}

JOURNAL OF BASIC SCIENCE AND ENGINEERING

175
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

Fig 4.2: Dynamic Risk Analysis Architecture

(“https://www.researchgate.net/publication/337619675/figure/fig1/AS:830401434091520@1574
994538033/Flowchart-for-dynamic-risk-analysis-DRA-validation.png”)

Applications:

 Runtime Vulnerability Detection: This technique finds vulnerabilities in applications as
they are being used, offering insights into potential attack scenarios.

 Security Testing: Verifies the efficacy of security controls put in place in the application
through security testing.

2. Configuration Management

Algorithm:

The distribution and administration of security configurations across endpoints in the CI/CD
pipeline are automated using configuration management. Security regulations are strictly followed
thanks to tools like Ansible, Puppet, and Chef.

Mathematical Model:

Let 𝐸 = {𝑒ଵ, 𝑒ଶ, … , 𝑒௞} be the set of endpoints and 𝑃 = {𝑝ଵ, 𝑝ଶ, … , 𝑝௟} be the set of security
policies. The compliance status 𝐶(𝑒௜) for endpoint 𝑒௜ is given by:

JOURNAL OF BASIC SCIENCE AND ENGINEERING

176
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

𝐶(𝑒௜) = {𝑝௝ ∣ 𝑝௝ ∈ 𝑃 and 𝑒௜ complies with 𝑝௝}

Applications:

 Consistent Security Enforcement: Assuring that all endpoints follow security policies
lowers the possibility of misconfigurations through consistent security enforcement.

 Scalability: Enables automated security administration in expansive and intricate settings.

Fig 4.3: Security-Configuration Management Architecture

(“https://www.cs.cit.tum.de/fileadmin/w00cfj/sse/pictures/logos/hardening_process.png”)

V. COMPARISON OF DIFFERENT AUTOMATED ENDPOINT SECURITY
HARDENING TECHNIQUES AND ALGORITHMS

__

Endpoint security hardening through automation protects CI/CD pipelines against various security
threats. Static Analysis, Dynamic Analysis, and Configuration Management Tools are compared
by key performance indicators. These parameters include detection phase, key tools, efficacy,
speed, efficiency, scope, development process impact, integration ease, security policy coverage,
compliance, and auditability. The comparison determines the optimum CI/CD pipeline security
for reliable security and efficiency.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

177
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

Table 5.1 compares the main evaluation metrics for various AI techniques, including
Reinforcement Learning for Automated Testing, Unsupervised Learning for Anomaly Detection,
and Supervised Learning for Defect Prediction for validating software upgrades:

Performance
Metric

Static Analysis
Dynamic
Analysis

Configuration
Management

Tools

Best Model
for Securing

CI/CD
Pipelines

Detection
Phase

Development Runtime
Deployment and

Operations

Configuration
Management

Tools

Key Tools
SonarQube,
Checkmarx

OWASP ZAP,
Burp Suite

Ansible, Puppet,
Chef

Ansible,
Puppet, Chef

Effectiveness
Detects up to

60% of
vulnerabilities

Detects up to
85% of web

vulnerabilities

Reduces
configuration-

related incidents
by 50%

Configuration
Management

Tools

Speed and
Efficiency

Fast during
code analysis

Slower due to
runtime

environment
testing

Fast and scalable
across multiple

endpoints

Configuration
Management

Tools

Scope of
Detection

Source code
vulnerabilities

Runtime and
logical

vulnerabilities

System and
configuration
vulnerabilities

Configuration
Management

Tools

Impact on
Development

Workflow

Minimal
disruption if

integrated early

Potential
runtime

overhead during
testing

Minimal
disruption,
consistent

enforcement

Configuration
Management

Tools

Ease of
Integration

Easy to
integrate into

CI/CD pipeline

Moderate;
requires setting
up test
environments

Easy to integrate,
scales well with
infrastructure
growth

Configuration
Management

Tools

Coverage of
Security
Policies

Limited to
code-level

issues

Comprehensive;
includes logical

flaws

Comprehensive;
includes system-

wide
configuration

policies

Configuration
Management

Tools

JOURNAL OF BASIC SCIENCE AND ENGINEERING

178
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

Compliance
and

Auditability

Helps in
meeting code

quality
standards

Aids in runtime
security

compliance

Ensures
adherence to

security policies
across the

environment

Configuration
Management

Tools

Table 5.1: Comparison of Automated Endpoint Security Hardening Techniques and Algorithms
The model comparison shows that Configuration Management Tools protects CI/CD pipelines best
with automatic endpoint security hardening. Full coverage, scalability, uniform security policy
enforcement across all endpoints, and little process disturbance are given. Ideal for CI/CD
pipelines, these technologies meet security standards and eliminate configuration-related security
incidents. Performance metrics and DevOps, accuracy, and data integrity standards for the CI/CD
pipeline determine the optimum model.

VI. DISSCUSSION

Software delivery integrity and security depend on CI/CD pipeline automated endpoint security
hardening. Dynamic and fast-paced CI/CD environments require sophisticated automated security
solutions to combat evolving threats. This discussion synthesizes the introduction, threat model,
security challenges, hardening solutions, and comparison to explain their efficacy.

Internal risks, external attacks, and component vulnerabilities threaten CI/CD pipelines. Rapid
integration and deployment can pose security weaknesses. Automatic endpoint security hardening
ensures consistent security policy application and pipeline component monitoring, reducing these
risks. Preventing exploitation requires proactive vulnerability detection and remediation.

SonarQube and Checkmarx can find up to 60% of code-level vulnerabilities before execution via
static analysis. Static analysis only finds code-level flaws, not runtime vulnerabilities or
component interactions. Dynamic analysis fixes application runtime vulnerabilities. OWASP ZAP
and Burp Suite can find 85% of web application vulnerabilities. Dynamic analysis is useful but
requires complicated test setups and runtime overhead, which may affect development workflow.

Configuration management tools like Ansible, Puppet, and Chef enforce infrastructure-wide
endpoint security policies. The technologies standardize security setups and reduce configuration-
related events by 50%. Scalability and integration enable large-scale systems with low process
disruption. The comparative table indicates that configuration management technologies secure
CI/CD pipelines well due to their complete coverage, scalability, and little workflow effect. They
continuously enforce security rules and system compliance. A solid security plan includes static
and dynamic analysis, but configuration management solutions offer the best protection.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

179
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

VII. CONCLUSION AND FUTURE SCOPE

The research emphasizes the need for strong security in CI/CD pipelines to protect against
increasing cyber threats. Automatic endpoint security hardening uses static and dynamic analysis
and configuration management methods to protect endpoints. Static analysis, however limited to
code-level vulnerabilities, is crucial for early identification and code quality. Dynamic analysis
identifies runtime vulnerabilities, but test settings are complex, which may affect development
workflow. Configuration management technologies are the best choice for full coverage and
minimal workflow disturbance because they apply security policies across the infrastructure.

After comparing each method, configuration management solutions win out for their scalability,
integration, and coverage. These technologies enable consistent security setups and decrease
configuration-related issues, making them essential for CI/CD security. However, static and
dynamic analysis combined with configuration management standards creates a tiered security
strategy that tackles vulnerabilities along the CI/CD pipeline, improving security and reliability.

Cyber threats and CI/CD pipeline complexity require constant improvements in automated
endpoint security hardening. Future research and development should focus on several crucial
areas:

 AI and Machine Learning Integration: Improve detection and remediation through
pattern analysis, vulnerability prediction, and automated responses.

 Advanced Threat Intelligence: Use real-time data to detect and mitigate new threats.

 Enhance Collaboration Tools: Improving collaboration across development, security,
and operations teams promotes DevSecOps.

 Improved Usability and User Experience: Make security products easy to use for
development and operations teams.

 Regulatory Compliance and Auditability: It checks simplify regulatory compliance and
auditability.

 Resilience and Recovery: Improve attack resilience and recovery systems, including
automated backup and incident response.

REFERENCES

1. Ventures, C., 2019. Cybercrime damages $6 trillion by 2021. Cybersecurity Ventures.
2. Wilson, G., 2020. DevSecOps: A Leader's Guide to Producing Secure Software Without

Compromising Flow, Feedback and Continuous Improvement. Rethink Press.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

180
Vol. 17, No. 1, (2020)
ISSN: 1005-0930

3. "The State of Vulnerability Management in DevOps.https://www.rezilion.com/wp-
content/uploads/2022/09/Ponemon-Rezilion-Report-Final.pdf.

4. OWASP. "OWASP ZAP." https://owasp.org/www-project-zap/
5. Sonatype. (2020). "2020 State of the Software Supply Chain."

https://www.sonatype.com/resources/state-of-the-software-supply-chain-2020.
6. SonarSource, S.A., 2016. Sonarqube documentation. línea]. Available: https://docs.

sonarqube. org/latest/architecture/architecture-integration.
7. Checkmarx. "Checkmarx Documentation." https://checkmarx.com/resource/documents/.
8. OWASP. "OWASP Top Ten Project." https://owasp.org/www-project-top-ten/
9. Red Hat. (2020). "The State of Enterprise Open Source."

https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2020
10. GitHub. "Securing Your GitHub Repository."https://docs.github.com/en/github/setting-

up-and-managing-your-github-user-account/securing-your-github-account
11. Jenkins. "Securing Jenkins." https://www.jenkins.io/doc/book/system-

administration/security/
12. Mysari, S. and Bejgam, V., 2020, February. Continuous integration and continuous

deployment pipeline automation using Jenkins Ansible. In 2020 International conference
on emerging trends in information technology and engineering (IC-ETITE) (pp. 1-4).
IEEE.

13. Kubernetes. "Security Best Practices for Kubernetes Deployment."
https://kubernetes.io/docs/concepts/security/overview/

14. Veracode. (2020). "State of Software Security." https://www.veracode.com/state-of-
software-security-report

15. OWASP. "OWASP Dependency-Check." https://owasp.org/www-project-dependency-
check/

16. HashiCorp. "Terraform Security Best Practices."
https://www.terraform.io/docs/cloud/guides/recommended-practices/security.html

17. AWS. "AWS IAM Best Practices." https://aws.amazon.com/iam/resources/best-practices/
18. CERT. "Insider Threats to Information Technology."

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=547000

