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ABSTRACT.

In this paper, bipolar valued vague subnearring of a nearring is introduced and some properties are
discussed. Here union and intersection are applied in bipolar valued vague subnearring of a
nearing. It is proved that product of two bipolar valued vague subnearring of a nearing is a bipolar
valued vague subnearring. Some properties of bipolar valued vague subnearring of a nearring are
discussed.
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INTRODUCTION:

In 1965, Zadeh [13] introduced the notion of a fuzzy subset of a Universal set. Vague set is an
extension of fuzzy set and it is appeared as a unique case of context dependent fuzzy sets. The
vague set was introduced by W.L.Gau and D.J.Buehrer [5]. W.R.Zhang [14, 15] introduced an
extension of fuzzy sets named bipolar valued fuzzy sets in 1994 and bipolar valued fuzzy set was
developed by Lee [6, 7]. Fuzzy subgroup was introduced by Azriel Rosenfeld [3]. RanjitBiswas
[9] introduced the vague groups. Cicily Flora. S and Arockiarani.I [4] have introduced a new class
of generalized bipolar vague sets. Anitha.M.S., et.al.[ 1] defined as bipolar valued fuzzy subgroups
of a group. Sheena. K. P and K.Uma Devi [10] have introduced the bipolar valued fuzzy
subbigroup of a bigroup. Shanthi.V.K and G.Shyamala[11] have introduced the bipolar valued
multi fuzzy subgroups of a group. Yasodara.S, KE. Sathappan [12] defined the bipolar valued
multi fuzzy subsemirings of a semiring. Bipolar valued multi fuzzy subnearring of a nearing has
been introduced by S.Muthukumaran and B.Anandh [8]. Anitha.K., et.al.[2] defined as bipolar
valued vague subsemirings of a semiring. Here, the concept of bipolar valued vague subnearring
of a nearring is introduced and estaiblished some results.
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1.PRELIMINARIES.

Definition 1.1. [13] Let X be any nonempty set. A mapping M : X — [0, 1] is called a fuzzy subset
of X.

Definition 1.2. [S] A vague set A in the universe of discourse U is a pair [ #4, / 4 |,where t4
:U— [0, 1] and fa : U— [0, 1] are mappings, they are called truth membership function and false
membership function respectively. Here #4(x) is a lower bound of the grade of membership of x
derived from the evidence for x and f4(x) is a lower bound on the negation of x derived from the
evidence against x and 74(x) + f4(x) < 1, for all xeU.

Definition 1.3. [5] The interval [ t4(x), I —f4(x) ] is called the vague value of x in A and it is denoted
by Va(x), i.e., Va(X) = [ ta(x), 1—f4(x) ].

Example 1.4. A = { <a, [0.1,0.2] >, <Db, [0.3, 0.4] >, <c, [0.5, 0.6] >} is a vague subset of X
={a,b,c}.

Definition 1.5. [14] A bipolar valued fuzzy set (BVFS) A in X is defined as an object of the form
A= {<x, A"(x), A (x) >/ xeX}, where A": X— [0, 1] and A~ : X— [-1, 0]. The positive
membership degree A'(x) denotes the satisfaction degree of an element x to the property
corresponding to a bipolar valued fuzzy set A and the negative membership degree A~(x) denotes
the satisfaction degree of an element x to some implicit counter-property corresponding to a
bipolar valued fuzzy set A.

Example 1.6. A = { <a, 0.2, -0.3>,<b, 04, -0.5 >, <c, 0.6, —0.7 >} is a bipolar valued fuzzy
subset of X = {a, b, ¢ }.

Definition 1.7. [4] A bipolar valued vague subset A in X is defined as an object of the
form A = { ( x, [ £;(x),1-f,;(x) 1, [-1-f,(x),t,(x)] ) / xeX }, where t,: X— [0, 1],
[, 1 X>[0,1], ¢, : X—> [-1,0] and £, : X— [-1, 0] are mapping such that z4(x) + f4(x) < 1 and
—-1<1t, +f,. The positive interval membership degree [ ¢} (x), 1—f, (x) ] denotes the
satisfaction region of an element x to the property corresponding to a bipolar valued
vague subset A and the negative interval membership degree [-1- f, (x), #,(x) ] denotes the
satisfaction region of an element x to some implicit counter-property corresponding to a bipolar

valued vague subset A. Bipolar valued vague subset A is denotedas A = { (x, V, (x),
V,(x))/xeX},where V, (x),=[ t;(x), 1-f,(x) Jand V (x) =[-1-f, (x), ,(x)].
Note that. [0] =[0, 0], [1] =1, 1] and [-1] =[-1, —1].

Example 1.8. [A] = {<a,[0.5,0,8],[-0.4,-0.1] >, <b, [0.22, 0.54], [-0.7,-0.2] >, <
c, [0.11,0.5],[ —0.8,—0.5] > } is a bipolar valued vague subset of X = {a, b, ¢ }.
Definition 1.9. [4] Let A=(V,, V,)and B=(V, , VV, ) be two bipolar valued vague

subsets of a set X. We define the following relations and operations:
(i) AcBifandonlyif ¥, (u)< ¥V, (u)and V, (u)> ¥V, (u), V ueX.
(i) A=Bifand only if ¥, (u)= ¥V, (u)and V', (u) =V, (v), V ueX.
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(iii) AnB = { (u, rmin (V] (u), V;; (u) ), rmax (¥, (u), V, (u)) )/ ueX }.

(iv) AUB = { (u, rmax (¥, (u), ¥V, (u)), rmin (V' (u), ¥, (u))) /ueX }. Here rmin (V' (u), V
(W) =[min {£(x), £ () }, min {1=£; x), 1=f; ()} 1, rmax (V] (W), ¥; (u)) =[ max {£;(x),
(0 b, max {1-£7 (x), 1-/; (x) } 1, rmin (V; (), ¥y (@) = [min {~1-f; (), ~1-f; (1)},
min {1, (), £5(¥) } 1, rmax (V; (), ¥y (@)= [max {=1—£; (1), =1 = £ (x) }, max {£(x), £; (%)
51

Definition 1.10. Let R be a nearring. A bipolar valued vague subset A of R is said to be a bipolar
valued vague subnearring of R (BVVSNR) if the following conditions are satisfied,

(i) Vi (x=y)2min{ V;(x), V;(y)}

(i) V, (xy)2mmin{ V; (x), V,; (y) }

(i) 7, (x=y) <mmax{ V, (x), V, (y) }

(1v) V, (xy) <rmax{ V,(x), V, (y) } forall x and y in R.

Example 1.11. Let R =Z3= { 0, 1, 2 } be a nearring with respect to the ordinary addition and

multiplication. Then A = { <0, [0.6, 0.8],[-0.9,-0.6]>,<1,[0.5,0.7], [- 0.8, - 0.5] >, <
2,[0.5,0.7], [- 0.8, — 0.5] > } is a bipolar valued vague subnearring of R.
Definition 1.12. Let A=(V,, VV,)yand B=(V,, V', ) be any two bipolar valued vague

subsets of sets G and H, respectively. The product of A and B, denoted by AxB, is defined as AxB
={{((XY), VisX¥), Vs y) )/ forallxinGandyinH } where V, , (X, y) =rmin { V', (x),
Vy(y)}and V, ,(x,y)=mmax { V, (x), V', (y) } forall x in G and y in H.

2. THEOREMS.

Theorem 2.1. If A=(V,, V;)and B =(V,, V) are two bipolar valued vague subnearrings of

a nearring R, then their intersection ANB is a bipolar valued vague subnearring of R.
Proof. Let C= AnB and let x, y in R. Now V' (x—y) =rmin { V', (x-y), ¥, (x—y) } =2 rmin {

rmin { V; (x), V; (y) }, tmin { V; (x), V5 (y) } } 2mmin { rmin { V', (x), V; (x) }, rmin {V/ (y),
Vy(y)} } =rmin { V. (x), V. (y) }. Therefore V. (x—y) > rmin{ V. (x), V. (y) }, forall x, y in R.
And V¢ (xy)=rmin { V,; (xy), V; (xy) } = min { rmin{ V' (x), ¥,/ (y) }, tmin { V;; (x), V;; (y) }}
> min { rmin { V; (x), V; (x) }, rmin { V/(y), V; (y) } } =rmin {VeX), Vey) )
Therefore V. (xy) = rmin { V. (x), V/ (y) }, for all x, y in R. Also V. (x—y) = rmax { V (x-y),
Vp (x=y) } <tmax { tmax {V, (x), ¥, (y) }, rmax{ Vy (x), V; (y) } } Stmax { rmax { V,; (x), V5
(x) }, rmax{ V, (y), V5 (y) } } = mmax { V. (x), V- (y) }. Therefore V. (x—y) < rmax { V. (x),
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Vi (y) ), forall x, yin R. And V. (xy) =mmax { V, (xy), V; (Xy) } <rmax { rmax
{ Vi), Vi(y)},max { Vy(x), Vy (y) }} <rmax { rmax { ¥ (x), V (x) }, rmax {
V,(y), Vy(y)} }=rmax { V. (x), V- (y) }. Therefore V. (xy) <rmax {V/ (x), V/ (y) }, for all x,

y in R. Hence ANB is a bipolar valued vague subnearring of R.

Theorem 2.2. The intersection of a family of bipolar valued vague subnearrings of a nearring R is
a bipolar valued vague subnearring of R.

Proof. The proof follows from the Theorem 2.1.

Theorem 2.3. If A=(V,, V,;)and B=(V,, V) are two bipolar valued vague subnearrings of

a nearring R, then their union AUB need not be a bipolar valued vague subnearring of R.
Proof. Since union of any two nearrings need not be a nearing, so union AUB need not be a bipolar
valued vague subnearring of R.

Theorem 2.4. IfA=(V,, V, )and B=(V,, V', ) are any two bipolar valued vague subnearrings
of the nearrings Ri and R> respectively, then AxB =( V., V,, ) is a bipolar valued vague
subnearring of RixRo.

Proof. Let x1, X2 be in Ry, y1 and y2 be in Ra. Then ( x1, y1) and ( X2, y2) are in RixRa. Now, V ,

[ (X1, y1) = (x2,¥2) ] = V. (x1=%2, y1=y2) = rmin { V; (xi=x2), V}; (y1=y2) } 2 rmin {
rmin{ V; (x1), V,; (x2) }, tmin { V' (y1), Vy (y2) }} =rmin { rmin { V7 (x1), V7 (y1) }, rmin { V;
(x2), Vg (y2) } } =mmin { V2, (x1,y1), Vi (X2, ¥2) }. Therefore V[, [ (x1, y1) —(x2, y2)] 2 rmin {
Vies K1, ¥1), Vg (x2,y2) }. And Vi [(X1, y1)(X2, y2)] = V5 (X1X2, y1y2) = rmin {
Vi (xix2), Vg (y1y2) } 2 rmin { rmin { V/(x1), V; (x2) }, tmin { V7 (y1), ¥ (y2) } } = rmin { rmin
{ Vi (x0), Vg (yn) 3, min { V;(x2), V' (y2) } } =rmin { VX1, ¥1), Vi (X2, y2) }. Therefore
Vs L1, yD(x2, y2) 12 mmin{ Vo p (x1,¥1), Vi (X2, ¥2) 3. Also Vo [ (x1,y1) = (X2, y2) | = Vi
( x1—X2, y1—=y2) = rmax {V, (x1—x2), V; (y1=y2) } <mmax { rmax { V, (x1), V, (x2) }, rmax {V,

(Y1), Vi (y2) }} = mmax { rmax { V, (x1), Vj (y1) }, tmax {V, (x2), Vy (y2) }} = rmax {V, (x,

y1)s Vs (X2, ¥2) }. Therefore V[ (x1, y1) —(x2, y2) ] < rmax { Vs (X1, ¥1), Vi (X2,
y2) 3. And Vo [ (X1, y1)(X2, y2) ] = V5 (X1X2, y1y2) = rmax { V, (xix2), Vy (y1y2)
} <mmax {rmax { V, (x1), V,(x2) },rmax { V; (y1), V; (y2) } } =rmax { rmax {

Vyx), Vg (y1) §, max { V, (x2), Vy (y2) § } =mmax { V, (X1, y1), V.5 (X2, y2) }. Therefore
Vs [(X1, y1)(X2, y2) ] <tmax{ V , (X1, y1), V.5 (X2, y2) }. Hence AxB is a bipolar valued vague
subnearring of RixRo.

Theorem 2.5. If A =(V,;, V), B=(V,, V,), ... K=(V/, V) are bipolar valued vague
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subnearrings of the nearrings Ra, R, ..., Rk respectively, then AxXBx... xK=(V , .,V s &
) 1s a bipolar valued vague subnearring of RaxRpx...x Rg.

Proof. Let (aj, by, ..., ki) and (a2, b, ..., ko) are in RaxRpx...x Rx. Now, V. . [ (a1 b, ...,
ki)—C(az b, ..., k) 1=V, . (ai—az, bi-ba, ..., ki—k2) =rmin { V (a1—a2), V, (b1-b2), ...,
Ve (ki—k2) } 2 rmin { rmin{ V' (a1), V (a2) }, rmin { V, (b1), V, (b2) }, ..., tmin { V (ki), V¢
(k2) } } =rmin { rmin { V (a1), V, (b1), ...,V (ki) }, min { V, (a2), V, (b2), ..., Vi (k2) } } =
rmin { Vg o @b, oK), Vi, ok (82, b2, .., k2) }. Therefore V. [(a1, br, ... ki) — (a2,
b, ., k)] 2 rmin {V g, (@, br, k), Vi, L (a2, b2, o ko) JoAnd Vi, L [(an, b,
ki)(az, b, ..., k2)] =V, 5. .« (a132, biba, ..., kikz) = rmin { V, (a1a2), V, (bib2),
Ve (kiko)} 2 rmin { rmin{ V' (a1), V, (a2) }, rmin { V', (b1), V', (b2) }, ..., tmin { V. (k1), V¢
(k2) } } =rmin { rmin { V, (a1), ¥V, (b1), ...,V (k1) }, rmin { V' (az), V; (b2), ..., Vi (ko) }} =
min { V. . (a,bi, ...,ki1), V4 .« (a2, b2, ..., ko) }. Therefore V' , . [(a1, b1, ..., ki)(az, b2,
o ko)l zmmin { Vi @bk, Vi, (a2, ba, ko) b Also Vg, i [(an, b, .o k)=
(a2, b2, ..., k2)] = V5 ok (@1—a2, bi=bo, ... ki—ka) =rmax { V' (a—a2), Vy (b1i=b2), ...,V (ki—k2)
} <rmax { rmax{ V, (a1), V, (az) }, rmax {V, (b1), V, (b2) }, ..., rmax {V (k1), Vi (ko) }} =
rmax { rmax {V, (a1), Vy (b1), ...,V (k1) }, rmax{ V, (a2), V, (b2), ..., Vi (kz) }} = rmax{
Vs @b, o k), Vs (a2, ba, ..., ko) }. Therefore V , . [(a1, by, ..., ki)—(az, ba, ...,
ko)l < tmax {V 5 (@1, b, oK), Vg, x (a2, b, . ko) 3o And Vi [(ar, b, .o ki) (a2,
b2, ..., k)] =V, 5 . (aia, biby, ..., kike) =rmax { V, (a1a2), V' (bib2), ...,V (kik2) } < rmax
{rmax{ V, (a1), V, (a2) }, rmax {V, (b1), V, (b2) }, ..., rmax {V (ki1), V; (ko) }} = rmax {rmax
{V,(a), Vg (b1), ...V (k)}, rmax{ V, (a2), Vj (b2), ..., Vi (ko) }} =rmax {V,, . (a1,b1, ...,
ki), Ve o (@2, b2, ..., ko) }. Therefore V, , . [(a1, b1, ..., ki)(az, ba, ..., k)| <rmax {V, . .
(a, by, ..., k1), V. .k (a2,b2, ..., ko) }. Hence AxBx...xK is a bipolar valued vague subnearring

of RaxRpX...x Rk.

Theorem 2.6. The product of a family of bipolar valued vague subnearrings of nearrings Ri is a
bipolar valued vague subnearring of RixR2x....

Proof. The proof follows from the Theorem 2.5.

Theorem 2.7. If A =(V,, V) is a bipolar valued vague subnearring of nearing R, then V', (—u)
=V, (), V,(—u)=V, (), V,(w) <V, (o)and V, (u) > ¥V, (0), V ueR, where o is the identity
element of (R, +).
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Proof. Let ueR and o be identity element of (R, +). Now V()= V, (—(-u)) >V, (—u) >V (v).
Therefore V', (u)=V, (-u), VueR. And V, (u)=V, (=(-u) ) <V, (-u) <V, (u). Thus V, (-u)
=V, (u), VueR. Also ¥, (0) = ¥V, (u—u) > rmin{ ¥V (u), ¥, (u) }= ¥V, (u). Thatis V(o) >V
(u), VueR. And V, (0) =V, (u—u) <rtmax{ V, (u), V,(u) } =V, (u). Thus V,(0) <V, (uv), V
ueR.

Theorem 2.8. Let A=(V,, V,)and B=(V,, V) be any two bipolar valued vague subsets of
the nearrings R and H respectively. Suppose that o and o' are the identity elements of R and H
respectively. f AXB=( V,,, V., ) is a bipolar valued vague subnearring of RxH, then at least
one of the following two statements must hold.

i)V, (0Y>V,/(a)and V, (0') <V, (a), V aeR,

(i) V', (0)= V, (b)and V', (0) < V, (b), V beH.

Proof. By contraposition, suppose that none of the statements (i) and (ii) holds. Then find keR
and leH such that V' (k)> V', (0"), V,; (k)< V, (o)and V; (1)> ¥V, (0), V; )<V, (0). And V',
(k, ) = rmin{ ¥V, (k), ¥, (1) } > min{V, (o), V,; (")} =V, , (0, 0"). Also V, , (k, 1) = rmax{V
k), V(D) } <rmax{ V,(0), V; (0")} = V,, (0, 0'). Thus AxB is not a bipolar valued vague
subnearring of RxH. Hence either ¥, (0') > V' (a), VacR and V, (0') <V, (a), V aecR or V', (0)
>V, (b),VbeHand V, (0) < V, (b), VbeH.

Theorem 2.9. Let C=(V., V. )and D=(V, , V) be any two BVVSNRs of the nearrings R and
H, respectively and CxD = (V__,, V.., ) be a BVVSNR of RxH. Then the following are true;

(i) if V2 (a) < V, (0") and V; (a) > V, (0"), V aeR, then C is a BVVSNR of R, where o' is the
identity element of H.

(ii) if V, (a) < V. (o) and V, (a) > V, (0), V acH, then D is a BVVSNR of H where o is the

identity element of R.
(ii1) either C is a BVVSNR of R or D is a BVVSNR of H.

Proof. Let a, beR. That is (a, 0'), (b, 0')eRxH. (i) Using V. (a) < V, (0'), VaeRand V/ (a) >V,
(0"), V aeR, then V. (a-b) = rmin{ V. (a-b), V', (o'+o")} = V. , ((a-b), (0'+0')) =
Ve [(a, 0)=(b, 0] = rmin{ V., (a, 0'), V¢, (b, 0)} =rmin{rmin{ V (a), V;; (o) }, rmin{ V' (b),
V5 (0) }} =rmin{ V. (a), V. (b)}. Thus V. (a—b) > rmin{ V, (a), V. (b) }, V a, beR. And V.
(ab) = rmin{ V' (ab), V; (0'0") } = Ve, ((ab), (0'0) = Ve, [(a, 0))(b, 0)] = rmin {V¢,, (a, 0'),

V.. (b,0) } =rmin{ rmin{ V. (a), V', (0) }, rmin{ V. (b), V', (0") }} =rmin{ V.
(a), V2 (b) }. Thus ¥/ (ab) > rmin{ ¥V (a), V- (b) }, V a, beR. Also ¥/ (a—b) = rmax{
Ve (a-b), ¥ (040 = Ve (a-b), (040Y) = Ve, (@, 0)~(b, o))] < rmax Ve (2, o),
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Vewp (b, 0)} = rmax{ rmax{ V¢ (a), V' (0) }, rmax{V (b), V', (o) }} = rmax {V; (a), V- (b)}.
Therefore V. (a—b) < rmax{V, (a), V', (b)}, V a, beR. And V. (ab) = rmax {V (ab), V, (0o'0") }
= Ve ((@b), (0'0")) = Vi, [(a, 0')(b, 0')] < tmax{ V,,, (a, o), Ve (b, 0')} = rmax {
rmax{V, (a), V, (0"}, rmax{V. (b), V, (o)} }= rmax{V, (a), V. (b)}. That is V. (ab) < rmax{
Vi (a), V. (b)}, V a, beR. Hence C is a BVVSNR of R. (ii) Using ¥, (a) < V' (0), V acH and
V, (a)> V. (0), V aeH, then ¥ (a—b) = rmin{ V', (a-b), V'] (o+o0) } = ¥V, ((ot+0), (a—b)) =V,
[(0, a)(0, b)] 2 min{ V., (0, a), V.., (0, b)} = min{ rmin{ 7 (0), ¥; (a)}, rmin{
Vi (o), V, (b)}} =rmin{V, (a), V', (b)}. Thus ¥, (a—b) >rmmin{V, (a), V, (b)}, V a,beH.
And ¥V (ab) = rmin{ ¥, (ab), V' (0.0)} = V., ( (0.0), (ab)) = V., [(0, a)(0, b)] = rmin{ V__, (o,
a), Veop (0, b)} = rmin{rmin{ V¢ (0), V; (a)}, rmin{ V¢ (o), V5 (b)}} = min{V; (a), V;; (b)}.
Thus ¥V, (ab) > rmin{ V' (a), V; (b)}, V a, beH. Also V (a—b) = rmax{V (a-b), V. (o+0)} =
Ve ((010), (a=b)) = Ve, [(0, w)=(0, b)] < rmax{ Ve, (0, @), Ve, p (0, b)) = rmax{ rmax{V (o),
V, (a)}, rmax{V, (o), V, (b)}} =rmax{V, (a), V, (b)}. Thatis V', (a—b) < rmax{
V, @), V,(b)}, VabeH. And V, (ab) =rmax{/V, (ab), V- (0.0)} = V., ((0.0), (ab))
= V. p (0, u)(o, b)] <rmax{V,,, (0, a), V., (0, b)}=rmax{rmax { V. (0), V, (a)}, rmax{V/ (0),
V, ()} =rmmax{V, (a), V, (b)}. Thus V, (ab) < rmax{V, (a), V', (b)}, V a, beH. Hence D is a
BVVSNR of H. Hence (iii) is clear.

Theorem 2.10. Let A=(V,, ¥V, ) be aBVVSNR of a nearring R. (i) If V] (x—y) = [0], then either

V,(x)=[0]or V, (y)=[0] for x, y in R. (ii) If V] (xy) = [0], then either V', (x) =[0] or V, (y) =
[0] for x, y in R. (111) If V', (x—y) = [0], then either V', (x) =[0] or V', (y) =[0] for x, y in R. (iv) If
V, (xy)=[0] then either V', (x) =[0] or V', (y) =[0] for x, y in R.

Proof. Let x, y in R. (i) By the definition, V', (x—y) > rmin { V', (x), V' (y)} which implies that [0]
> rmin{ ¥V, (x), V, (y)}. Therefore either V; (x) = [0] or V', (y) = [0]. (ii) By the definition, V'

(xy) 2 rmin{ ¥ (x), ¥, (y)} which implies that [0] > rmin{V, (x), V' (y)}. Therefore either V'

(x) =[0] or ¥, (y) = [0]. (iii) By the definition, ¥, (x—y) < rmax{V, (x), ¥, (y)} which implies
that [0] <rmax{V, (x), V', (y)}. Therefore either V', (x)=[0] or V', (y)=[0]. (iv) By the definition,

V, (xy) <rmax{V, (x), V, (y)} which implies that [0] <rmmax {V, (x), V,
(y) }. Therefore either V', (x) =[0] or V', (y) = [0].
Theorem 2.11. If A=(V,, ¥, )is aBVVSNR of a nearring R, then H= { xeR | vV,

(x)=[1], V, (x) =[-1] } is either empty or a subnearring of R.
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Proof. If no element satisfies this condition then H is empty. If x and y in H then V| (x—y) >
rmin{V,; (x), V,; (y)} =mmin{[1], [1]} = [1]. Therefore V', (x—y) =[1]. And V' (xy) >
rmin{ ¥V, (x), ¥, (y)} = rmin{[1], [1]} = [1]. Therefore V' (xy) = [1]. Also V', (x+y) <

rmax{V, (x), V, (y)} =mmax{[-1], [-1]} =[-1]. Therefore V', (x—y) =[-1]. And V' (xy) < rmax{
V,(x), V,(y)} = rmax{[-1], [-1]} = [-1]. Therefore V', (xy) = [-1]. That is x+yeH and xyeH.

Hence H is a subnearring of R. Hence H is either empty or a subnearring of R.
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