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 Abstract 

In precision agriculture, where maximizing crop yield while minimizing resource usage is 
paramount, the need for efficient weed detection models is critical. Weeds pose a significant threat 
to crop productivity, competing for essential resources such as nutrients, water, and sunlight. 
Traditional methods of weed control, such as manual labor or blanket herbicide application, are 
time-consuming, labor-intensive, and often result in overuse of chemicals, leading to 
environmental degradation and economic inefficiency. This paper presents a Hyperparameter-
Tuned Deep Learning model for Weed Detection and Classification (HPTDL-WDAC) suitable for 
Precision Farming applications. The proposed HPTDL-WDAC system integrates advanced 
techniques from computer vision and deep learning to accurately identify and classify weeds in 
agricultural fields. The workflow begins with pre-processing steps aimed at enhancing image 
quality and reducing noise. Specifically, a Gaussian Filter (GF) is employed to effectively remove 
noise from input images, followed by resizing to standard dimensions and class labelling for 
subsequent analysis. 

For object detection and classification, the RetinaNet model is employed. RetinaNet's innovative 
architecture, featuring a focal loss mechanism, enables robust detection of weed instances amidst 
varying backgrounds and lighting conditions. Notably, the hyperparameters of the RetinaNet 
model are fine-tuned using the ADAM optimizer, optimizing its performance for the specific task 
of weed detection and classification in precision farming scenarios. A thorough simulation analysis 
of the HPTDL-WDAC technique was conducted using a benchmark dataset. Experimental results 
demonstrate the effectiveness of the proposed system in accurately detecting and classifying weeds 
in various agricultural systems. This shows that it exhibits improved results compared to recent 
approaches on various metrics. 

Keywords: Precision agriculture, Weed classification, Gaussian Filter, RetinaNet, ADAM 
optimizer, Hyperparameters 
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1. Introduction 

Precision farming, also known as precision agriculture, is an approach to farming that utilizes 
technology and data-driven methods to optimize crop production while minimizing waste and 
environmental impact. It involves the use of various technologies such as GPS, sensors, drones, 
and AI to collect and analyze data about soil conditions, weather patterns, crop health, and other 
factors that affect agricultural productivity. By precisely tailoring inputs such as water, fertilizers, 
and pesticides to the specific needs of individual plants or sections of fields, precision farming 
aims to maximize yields, reduce costs, and minimize the negative impacts of agriculture on the 
environment [1].  

Weeds pose a significant challenge in modern agriculture and can have detrimental effects on crop 
yield, quality, and overall farm profitability. Weeds compete with crops for essential resources 
such as nutrients, water, and sunlight, leading to reduced growth and yield. Additionally, some 
weeds can release harmful chemicals or serve as hosts for pests and diseases, further impacting 
crop health. Traditional methods of weed control, such as manual labour or blanket herbicide 
application, are often inefficient, labour-intensive, and can have adverse environmental 
consequences such as soil erosion, water contamination, and biodiversity loss [2]. The need for 
effective weed management models in modern agriculture is therefore paramount. Weed 
management models leverage advanced technologies such as computer vision, machine learning, 
and robotics to accurately detect, identify, and control weeds in agricultural fields. These models 
enable farmers to precisely target interventions, such as selective herbicide application or 
mechanical weeding, based on real-time data and analysis of weed distribution and abundance. By 
optimizing weed control practices, weed management models help farmers reduce reliance on 
chemical inputs, minimize environmental impact, and improve overall farm productivity and 
profitability [3]. 

1.1 Paper Contributions 

This paper proposes a novel AI-powered weed detection and classification model for precision 
farming. The methodology begins with pre-processing steps aimed at optimizing the quality of 
input images. To this end, a Gaussian Filter is applied to remove noise, ensuring clearer and more 
accurate detection results. Additionally, resizing and class labelling are performed to standardize 
the data and facilitate subsequent analysis. Central to the weed detection system is the utilization 
of the RetinaNet model for object detection and classification. RetinaNet, renowned for its 
efficiency and accuracy in detecting objects of varying sizes and orientations, is well-suited for the 
dynamic and complex environments encountered in agricultural settings. Importantly, the 
hyperparameters of the RetinaNet model are fine-tuned using the ADAM optimizer, optimizing its 
performance for the specific task of weed detection and classification. By integrating these 
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advanced technologies, the proposed system offers farmers a powerful tool for proactive weed 
management in precision farming.  

1.2 Paper Organizations 

The remainder of the investigation is structured as follows: Section 2 discusses the research works 
published in this field, Section 3 provides a detailed explanation of the functionality of the HPTDL-
WDAC technique, and Section 4 presents the experimental findings. Finally, Section 5 offers 
concluding remarks for the study. 

2. Related works 

Z. Wu et al. [4] provides a thorough and insightful overview of the various computer vision 
techniques applied to weed detection in precision agriculture. The authors effectively categorize 
and analyze different methodologies, including image preprocessing, feature extraction, machine 
learning, deep learning, and sensor technologies. Their critical evaluation of these methods, 
along with a discussion of performance metrics, highlights the advancements and challenges in 
the field. A.H. Al-Badri et al. [5] proposes an extensive review of the application of machine 
learning techniques for weed classification. The authors thoroughly examine the current 
methodologies, highlighting their strengths and limitations, and discuss the various challenges 
faced in the field, such as dataset quality, computational requirements, and model 
interpretability. Jingning Yu [6] provides an in-depth analysis of using Gaussian filters to 
enhance image quality by mitigating the effects of Gaussian and pepper noise. The author 
explores the mathematical foundations and implementation details of Gaussian filtering, 
demonstrating its effectiveness in noise reduction and image restoration. R. Punithavathi et al. 
[7] introduces a sophisticated model integrating computer vision and deep learning for effective 
weed detection in precision agriculture. The authors detail a comprehensive approach, including 
noise removal using WF, followed by the application of the Multi-Scale Faster RCNN model for 
object detection, and ELM for classification. Hyperparameter tuning with the Farmland Fertility 
Optimizer further enhances model performance. The study demonstrates significant 
improvements over existing methods, making a notable contribution to advancing sustainable 
farming practices through precise and automated weed management. N. Rai et al. [8] provides a 
comprehensive review of the state-of-the-art deep learning techniques applied to precision weed 
management. The authors systematically explore various deep learning models and their 
applications in weed detection, classification, and management, highlighting their advantages, 
limitations, and potential for improving agricultural productivity. 

N. Mohanad et al. [9] develops an innovative application of the RetinaNet deep learning 
architecture for dual tasks of object detection and distance estimation. The authors detail the 
methodology, highlighting the robustness and accuracy of RetinaNet in identifying objects within 
an image and simultaneously estimating their distances. Through extensive experimentation, the 
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study demonstrates the model's effectiveness and potential applications in various fields, including 
autonomous navigation and surveillance. Mouna Afif et al. [10] offers an insightful evaluation of 
the RetinaNet deep learning model for its applicability in assisting navigation for blind and visually 
impaired individuals. The authors rigorously assess the performance of RetinaNet in detecting 
indoor objects, focusing on its accuracy, reliability, and real-time processing capabilities. R. 
Kamath et al. [11] proposes an innovative approach for differentiating between paddy crops and 
weeds using a multiple classifier system. The authors explore the integration of various machine 
learning classifiers to enhance the accuracy and robustness of weed detection in paddy fields. N. 
Islam et al. [12] performs a thorough investigation into the application of image processing and 
machine learning for early weed detection in chilli farms. The authors present a robust 
methodology combining advanced image processing techniques with machine learning algorithms 
to accurately identify and differentiate weeds from chilli plants at an early growth stage. O.G. 
Ajayi et al. [13] offers a comprehensive evaluation of the YOLO v5 model for classifying crops 
and weeds using images captured by unmanned aerial vehicles (UAVs). The authors meticulously 
assess the model's performance in terms of accuracy, speed, and reliability, demonstrating its 
effectiveness in real-time agricultural applications. 

3. The Proposed Model 

The present research introduces a novel HPTDL-WDAC technique designed to effectively 
distinguish between plants and weeds in precision agriculture. This technique incorporates 
several subprocesses, including GF-based preprocessing, RetinaNet-based object detection and 
classification, and ADAM-based parameter optimization. The proposed model successfully 
discerns weeds from crops, thereby reducing herbicide usage and enhancing productivity. Figure 
1 provides an overview of the entire process of the HPTDL-WDAC technique. 
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Figure 1: Overall process of HPTDL-WDAC technique 

3.1 Image Pre-processing 

Image pre-processing is a crucial step in preparing raw image data for subsequent analysis and 
interpretation. It involves several operations aimed at enhancing image quality, reducing noise, 
and standardizing data for further processing. This step is essential in weed classification systems 
to ensure the accuracy and reliability of the classification process. In the proposed model, pre-
processing comprises three essential processes: class labelling, noise removal, and subsequent 
image resizing to facilitate further processing. 

3.1.1 Class Labelling 

Class labelling is a crucial step in the pre-processing of image data, particularly in supervised 
learning tasks such as object detection or classification. In the context of weed classification, class 
labelling involves assigning categorical labels to images to indicate the presence of either plants 
or weeds. This labelling is essential for training machine learning algorithms to recognize and 
distinguish between different classes of objects in images. By providing ground truth labels for 
each image in the dataset, class labelling enables the model to learn the relationship between input 
features and their corresponding class labels. This supervised learning process allows the model 
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to generalize its understanding of different classes of objects and make accurate predictions on 
unseen data. Ultimately, accurate class labelling is essential for the development of robust and 
reliable machine learning models for weed classification in precision agriculture. 

3.1.2 Noise Removal using GF technique 

At the outset, the Gaussian filter approach can be employed to eliminate noise present in the image. 
Noise removal is an image pre-processing technique designed to enhance the features of the image 
corrupted by noise. The Gaussian filter operates by convolving the image with a Gaussian kernel, 
effectively smoothing out high-frequency noise components while preserving the underlying 
structures and edges in the image. 

The 2D Gaussian function is defined as: 

𝐺(𝑥, 𝑦) =  exp (− )        (1) 

Where: 

𝐺(𝑥,𝑦) represents the value of the Gaussian kernel at position (𝑥,𝑦) 

𝜎 is the standard deviation of the Gaussian distribution, 

𝑥 and 𝑦are the spatial coordinates within the kernel. 

The convolution operation involves sliding the Gaussian kernel over the image and computing 
the weighted sum of pixel values within the kernel window at each position. It can be 
represented as: 

𝐼 (𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥 − 𝑖, 𝑦 − 𝑗). 𝐺(𝑖, 𝑗)     (2) 

Where: 

𝐼(𝑥,𝑦) is the original pixel intensity at position (𝑥,𝑦) 

𝐺(𝑖,𝑗) is the value of the Gaussian kernel at position (𝑖,𝑗) 

𝑘 is the size of the Gaussian kernel 

After applying the Gaussian filter, high-frequency noise components in the image are attenuated, 
resulting in a smoother and cleaner image. This noise reduction enhances the quality of the 
image and improves the performance of subsequent processing tasks, such as weed detection and 
classification. 

3.1.3 Image Resizing 
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Image resizing is performed to standardize the dimensions of input images, ensuring consistency 
across the dataset and facilitating efficient processing. Resizing involves scaling the image to a 
predefined width and height while preserving the aspect ratio. The image resizing can be 
represented as: 

𝑅𝑒𝑠𝑖𝑧𝑒𝑑_𝐼𝑚𝑎𝑔𝑒(𝑖) = 𝑟𝑒𝑠𝑖𝑧𝑒(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝐼𝑚𝑎𝑔𝑒(𝑖), 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡)   (3) 

Where Original_Image(𝑖) represents the 𝑖𝑡ℎ original image, and width and height denote the 
desired dimensions of the resized image. 

3.2 Dataset Splitting 

Dataset splitting is a critical step in machine learning and statistical modeling, where the 
available dataset is divided into separate subsets for training, and testing. Training set used to 
train the model and the testing used to evaluate the model's performance and assess its 
generalization to unseen data. Let's denote the entire dataset as 𝐷 containing 𝑁 samples. The 
dataset splitting process can be represented as follows: 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑒𝑡(𝐷 ) = {(𝑥 , 𝑦 )}        (4) 

𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑆𝑒𝑡(𝐷 ) = {(𝑥 , 𝑦 )}         (5) 

Dataset splitting allows us to assess how well our model generalizes to unseen data. By 
evaluating the model on a separate testing set, we obtain an unbiased estimate of its performance. 
Training a model on the entire dataset without validation or testing can lead to overfitting, where 
the model learns to memorize the training data rather than capturing underlying patterns. Dataset 
splitting helps mitigate overfitting by providing a separate testing set for evaluation. This is 
crucial for deploying the model in real-world applications. 

3.3 Optimized RetinaNet based Object Detection and Classification 

This manuscript employs the RetinaNet technique for the effective detection and classification of 
weed and crop images. The RetinaNet deep learning architecture is a sophisticated model 
tailored for high-accuracy object detection, making it ideal for weed detection and classification 
in precision agriculture. The process begins with input images of agricultural fields, which are 
passed through the backbone network, typically a pre-trained ResNet-50 or ResNet-101. This 
network extracts hierarchical features from the images at various levels of abstraction. These 
features are then fed into a Feature Pyramid Network (FPN), which constructs a multi-scale 
feature pyramid, enabling the detection of weeds at different sizes and scales. The model 
includes two specialized subnets: the classification subnet and the box regression subnet. The 
classification subnet processes the feature maps to predict the probability of each anchor box 
containing a weed, plant, or background. The box regression subnet predicts the coordinates of 
the bounding boxes around the detected objects. The final output of RetinaNet consists of class 
probabilities and precise bounding box coordinates for each detected weed and plant, enabling 
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accurate and effective weed management by allowing for targeted interventions in the 
agricultural fields. The entire detection process is depicted in Figure 2. 

 

Figure 2: RetinaNet Model Architecture 

3.3.1 Backbone Network 

The backbone network in the RetinaNet model is typically a pre-trained convolutional neural 
network such as ResNet-50 or ResNet-101. This network is responsible for extracting 
hierarchical feature maps from the input image. This manuscript utilizes the ResNet-50 as 
backbone network of the proposed model. The backbone network processes an input image 𝐼 
through a series of convolutional layers, which can be described as follows: 

 The input image 𝐼 is first convolved with a set of filters to produce the initial feature map 
𝐹 : 

𝐹 = 𝐶𝑜𝑛𝑣(𝐼, 𝑊 ) + 𝑏          (6) 

where 𝑊  and 𝑏  are the weights and biases of the initial convolutional layer. 

 This feature map 𝐹  is then passed through a non-linear activation function (typically 
ReLU) and pooling layer: 

𝐹 = 𝑅𝑒𝐿𝑈(𝐹 )          (7) 

𝐹 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹 )         (8) 

 The feature maps are further processed through a series of residual blocks. Each residual 
block consists of multiple convolutional layers with skip connections to allow for easier 
gradient flow. For a residual block at layer 𝑙: 

𝐹 = 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣(𝐹 , 𝑊 ) + 𝑏         (9) 
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Here, 𝐹  is the input feature map to the 𝑙-th residual block, and 𝑊  and 𝑏  are the weights 
and biases for the convolutions within the block. 

 The output of the residual block is added to its input through a skip connection: 

𝐹 =  𝐹 + 𝐹                    (10) 

 The backbone network outputs feature maps from different layers, typically after each stage 
of residual blocks. These feature maps correspond to different levels of the network, 
capturing different spatial resolutions and feature complexities. The feature pyramid in the 
FPN is built by these feature maps. 

3.3.2 Feature Pyramid Network 

The Feature Pyramid Network (FPN) in the RetinaNet model constructs a multi-scale feature 
representation from the backbone network's outputs, enabling robust detection of objects of 
various sizes. Let's denote the feature maps extracted from the backbone network as C2, C3, C4, 
and C5. These feature maps correspond to different levels of the backbone network, where C2 has 
the highest spatial resolution and C5 has the lowest. 

Top-Down Pathway: The FPN starts by creating a top-down pathway, where higher-level 
(coarser) feature maps are upsampled and merged with lower-level (finer) feature maps. 

Lateral Connections: Lateral connections are used to combine the upsampled feature maps with 
the corresponding feature maps from the backbone network. 
 
Initial Coarser Feature Map  
𝑃 = 𝐶𝑜𝑛𝑣1𝑥1(𝐶 )                    (11) 
Here, 𝐶𝑜𝑛𝑣1𝑥1 denotes a 1x1 convolution used to reduce the number of channels. 

Subsequent Feature Maps  
For levels 𝑃𝑙 where 𝑙=4,3,2: 
𝑃 = 𝐶𝑜𝑛𝑣1𝑥1(𝐶 ) + 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒(𝑃 )                 (12) 
𝐶𝑜𝑛𝑣1𝑥1(𝐶 ): 1x1 convolution to reduce the number of channels in 𝐶𝑙. 
𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒(𝑃 ): Upsampling the coarser feature map 𝑃𝑙+1 by a factor of 2. 

The construction of the finer features maps of FPN is 

𝑃 = 𝐶𝑜𝑛𝑣3𝑥3(𝐶𝑜𝑛𝑣1𝑥1(𝐶 ) + 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒(𝑃 ))                (13) 

𝑃 = 𝐶𝑜𝑛𝑣3𝑥3(𝐶𝑜𝑛𝑣1𝑥1(𝐶 ) + 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒(𝑃 ))                (14) 

𝑃 = 𝐶𝑜𝑛𝑣3𝑥3(𝐶𝑜𝑛𝑣1𝑥1(𝐶 ) + 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒(𝑃 ))                (15) 

Final Feature Maps: After combining the feature maps using the lateral connections, each 𝑃𝑙 
undergoes a 3x3 convolution to generate the final feature maps, which helps to reduce aliasing 
artifacts from the upsampling: 
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𝑃 = 𝐶𝑜𝑛𝑣3𝑥3(𝑃 )                    (16) 
where 𝐶𝑜𝑛𝑣3𝑥3 denotes a 3x3 convolution operation. 

Output of FPN 

The output of the FPN is a set of feature maps P2, P3, P4, and P5. These feature maps capture rich, 
multi-scale information, allowing the subsequent RetinaNet subnets to perform robust object 
detection and classification across different object sizes. 

3.3.3 Classification Subnet 

The classification subnet is applied to each level of the feature pyramid, producing outputs for 
each spatial location on the feature map. It predicts the probability of each anchor box containing 
a specific object class (weed or plant). The steps involved in the classification subnet are 
explained below. 

Input Feature Maps: The input to the classification subnet consists of the feature maps 𝑃𝑙 from 
each level 𝑙 of the FPN. 

Convolutional Layers: The classification subnet typically consists of a series of shared 
convolutional layers, followed by a final convolutional layer that outputs the class probabilities. 
Let's denote the shared convolutional layers as a series of 𝑘 convolutional operations. 

𝐻
( )

= 𝑅𝑒𝐿𝑈 𝐶𝑜𝑛𝑣 𝐻
( )

, 𝑊( ) + 𝑏( ) , 𝑖 = 1,2, … , 𝑘               (17) 

Where 𝐻( )
= 𝑃  

Final Classification Layer: The final layer produces the class scores for each anchor box. If there 
are 𝐴 anchors per spatial location and 𝐶 object classes, the final output of the classification subnet 
has dimensions (𝐻×𝑊×𝐴×𝐶) for each level 𝑙, where 𝐻 and 𝑊 are the height and width of the 
feature map. The final classification layer applies a convolution to produce the class scores: 

𝐶 = 𝐶𝑜𝑛𝑣 𝐻
( )

, 𝑊 + 𝑏                    (18) 

Here, 𝐶𝑙 is the class score tensor for feature map level 𝑙, 𝑊𝑐 is the weight tensor of the final 
convolutional layer, and 𝑏𝑐 is the bias. 

Sigmoid Activation: The class scores are converted to probabilities using the sigmoid function. 

𝑃(𝑐|𝑥) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶 )                   (19) 

where 𝑃(𝑐∣𝑥) is the predicted probability for class 𝑐 given the feature map 𝑥.  

These predictions are then used to determine the presence and types of objects (weeds, plants) in 
the input images, facilitating effective weed detection and classification in precision agriculture 
applications. 
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3.3.4 Box Regression Subnet 

The box regression subnet is responsible for predicting the coordinates of bounding boxes for 
objects detected in the input image. This subnet processes the feature maps from each level of the 
Feature Pyramid Network to produce these bounding box predictions. The following describes the 
procedures that make up the box regression subnet. 

Input Feature Maps: The input to the box regression subnet consists of the feature maps 𝑃𝑙 from 
each level 𝑙 of the FPN. 

Convolutional Layers: Similar to the classification subnet, the box regression subnet consists of 
a series of shared convolutional layers. Let's denote these shared convolutional operations as a 
series of 𝑘 convolutional layers. 

𝐻
( )

= 𝑅𝑒𝐿𝑈 𝐶𝑜𝑛𝑣 𝐻
( )

, 𝑊( ) + 𝑏( ) , 𝑖 = 1,2, … , 𝑘               (20) 

Where 𝐻( )
= 𝑃  

Final Box Regression Layer: The final layer produces the bounding box coordinates for each 
anchor box. If there are 𝐴 anchors per spatial location, the final output of the box regression subnet 
has dimensions (𝐻×𝑊×𝐴×4) for each level 𝑙, where 𝐻 and 𝑊 are the height and width of the 
feature map and 4 corresponds to the 4 coordinates of the bounding box (x, y, w, h). Where (x, y) 
represents the coordinates of the center of the bounding box, and w and h denote the width and 
height of the bounding box respectively. The final box regression layer applies a convolution to 
produce the bounding box coordinates: 

𝐵 = 𝐶𝑜𝑛𝑣 𝐻
( )

, 𝑊 + 𝑏                    (21) 

Here, B𝑙 is the bounding box coordinate tensor for feature map level 𝑙, 𝑊b is the weight tensor of 
the final convolutional layer, and 𝑏b is the bias. 

In precision agriculture applications, these predictions are used to localize the objects (plants, 
weeds) identified in the input images, enabling precise and accurate weed detection and 
classification. 

3.3.5 Focal Loss 

Focal Loss is a specialized loss function used in the RetinaNet model to address the issue of class 
imbalance during training, particularly in object detection tasks where there are many more 
background examples than object examples. The focal loss modifies the standard cross-entropy 
loss by adding a factor that down-weights the loss assigned to well-classified examples. This 
ensures that the model focuses more on hard-to-classify examples. As per the proposed model, the 
focal loss can be defined as follows: 
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 pt be the model's estimated probability for the ground truth class. If 𝑦=1 (positive class), 
then 𝑝𝑡=𝑝. If 𝑦=0 (negative class), then 𝑝𝑡=1−𝑝. 

 α be the weighting factor for the positive class to address class imbalance. 

 γ be the focusing parameter that reduces the loss contribution from easy examples and 
extends the range in which an example receives a low loss. 

The focal loss FL is given by: 

𝐹𝐿(𝑝 ) = −𝛼 (1 − 𝑝 ) log(𝑝 )                            (22) 

Where, 

𝑝 =
𝑝

1 − 𝑝
 
 

 Here, p is the predicted probability of the class being 1. 

𝛼 =
𝛼

1 − 𝛼
 
 

 Here, the weighting factor 𝛼 helps balance the importance of 

positive and negative examples. 

(1 − 𝑝 )  reduces the relative loss for well-classified examples, focusing more on hard 
examples. log(𝑝 ) is the standard log-loss for the correct class. 

3.3.6 Non-Maximum Suppression 

Non-Maximum Suppression (NMS) is a crucial post-processing step in object detection models, 
including RetinaNet. It helps to filter out multiple detections of the same object by retaining the 
most confident one and suppressing the others based on their overlap. The procedures followed in 
the NMS are described below. 

Initialization 

 Let {𝑏1,𝑏2,...,𝑏𝑁} be the set of predicted bounding boxes. 

 Let {𝑠1,𝑠2,...,𝑠𝑁}be the corresponding confidence scores for these bounding boxes. 

Sorting 

 Sort the bounding boxes by their confidence scores in descending order. Assume after sorting, 
the indices are rearranged such that 𝑠1≥𝑠2≥...≥𝑠𝑁. 

Intersection over Union (IoU) 

 Compute the IoU for each pair of bounding boxes to determine their overlap. The IoU between 
two bounding boxes 𝑏𝑖 and 𝑏𝑗 is defined as: 

𝐼𝑜𝑈 𝑏 , 𝑏 =
( ∩ )

( ∪ )
                             (23) 

Here, 𝐴𝑟𝑒𝑎 𝑏 ∩ 𝑏  is the area of the intersection of 𝑏𝑖 and 𝑏𝑗, and 𝐴𝑟𝑒𝑎 𝑏 ∪ 𝑏  is the area 

of their union. 
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Algorithm 

 Initialize an empty list to hold the indices of the final bounding boxes:  
𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = []  

 For each bounding box 𝑏𝑖 in the sorted list: 
 Compare 𝑏𝑖 with all previously selected boxes using IoU. 
 If 𝑏𝑖 has a high overlap with any selected box, discard 𝑏𝑖. 
 If 𝑏𝑖 has a low overlap with all selected boxes, add 𝑏𝑖 to the list of selected boxes: 

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∪ {𝑖} 
Output 

 The final list of indices 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 corresponds to the bounding boxes that are retained after 
NMS. 

In the proposed model, NMS helps to  

 Eliminate redundant detections of the same object, which can occur due to the dense sampling 
of anchor boxes. 

 Ensure that only the most confident detection is kept for each object, improving the clarity 
and accuracy of the final detections. 

 Reduce the number of false positives, which is critical for accurate object detection and 
classification, particularly in applications such as precision agriculture where distinguishing 
between weeds and crops accurately is essential. 

3.4 Hyperparameter Tuning using ADAM Optimizer 

Hyperparameter tuning in deep learning models like RetinaNet is essential for optimizing 
performance. The ADAM (Adaptive Moment Estimation) optimizer is widely used due to its 
adaptive learning rate and efficient computation. It combines the advantages of RMSProp and 
AdaGrad algorithms. The update rules for ADAM are as follows: 

Initialize parameters: 

 Learning rate: 𝛼 

 Exponential decay rates for moment estimates: 𝛽1, 𝛽2 

 Small constant for numerical stability: 𝜖 

Initialize first moment 𝑚 and second moment 𝑣 to 0: 

𝑚0=0, 𝑣0=0 

Compute biased estimates of first and second moments:  
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For each parameter 𝜃𝑡: 

𝑚 = 𝛽 𝑚 + (1 − 𝛽 )𝑔                   (24) 

𝜗 = 𝛽 𝜗 + (1 − 𝛽 )𝑔                   (25) 

where 𝑔  is the gradient of the loss function at time step 𝑡. 

Compute bias-corrected first and second moments: 

𝑚 =                     (26) 

𝜗 =                     (27) 

Update parameters: 

𝜃 = 𝜃 − 𝛼                    (28) 

3.4.1 Applying ADAM in RetinaNet Hyperparameter Tuning 
Learning Rate (𝛼): The learning rate is crucial for the convergence speed and stability of the 
training process. 
Batch Size: The batch size affects the stability of the training process and the memory usage. 
Epochs: The number of epochs determines how many times the model will iterate over the entire 
training dataset. It is tuned to ensure the model adequately learns without overfitting. 
Anchor Scales and Aspect Ratios: These hyperparameters are specific to RetinaNet and determine 
the shapes and sizes of the anchor boxes. 
Focal Loss Parameters (𝛾 and 𝛼): The parameters of the focal loss function need to be tuned to 
balance the contribution of easy and hard examples. 

During training, for each mini-batch of training examples, compute the gradient 𝑔𝑡 of the loss 
with respect to each model parameter 𝜃𝑡. Then, update 𝜃𝑡 using the ADAM update rules. Repeat 
this process for each epoch until the model converges. 

By using ADAM, the model parameters 𝜃𝑡 are updated adaptively, leading to potentially faster 
and more stable convergence compared to standard SGD, especially when dealing with the 
complex, high-dimensional parameter space of RetinaNet. 

4. Results and Discussion 
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This section of the manuscript presents a detailed exposition of the proposed approach, supported 
by a comprehensive evaluation. The effectiveness of our strategy is validated through careful 
consideration of various metrics, including accuracy, precision, recall, and F1-score. Notably, the 
proposed technique stands out from existing methods such as Inception-v3, VGG16, and RCNN. 
The HPTDL-WDAC approach is specifically tailored for plant and weed image data collected 
from [24], consisting of a total of 1300 images. These images are divided into two categories: plant 
and weed, with 634 and 666 images, respectively. Figure 3 illustrates examples of plant and weed 
images. 

 

Figure 3: Sample images for three different classes 

Out of the 1300 collected images, 1040 are used for training the proposed classifier, while the 
remaining images are reserved for testing. The implementation details of the HPTDL-WDAC 
technique are outlined in Table 1. Additionally, Figure 4 presents the various stages of the 
proposed model, starting with image preparation, followed by splitting the dataset into 80% for 
training and 20% for testing, and finally training and testing the model. Figure 5 displays the 
detection and classification results for the test images. The validation of the approach is confirmed 
through empirical evaluations, with detailed metrics provided in this section. 

Table 1: Simulation Variables 

S. No. Method Description Value 

1 HPTDL-
WDAC 

Learning Rate 1e-5 

2 Batch Size 32 



Vol. 21, No. 1, (2024) 
ISSN: 1005-0930 

 

JOURNAL OF BASIC SCIENCE AND ENGINEERING 

1859 
 
 

3 Epochs 100 

4 Anchor Scales [0.1,0.2,0.4] 

5 Aspect Ratios [0.5,1.0,2.0] 

6 Focal Loss Parameters 𝛾 =1.0 

𝛼 = 0.5 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4: Train and Test the model with the dataset (a) Prepare images (b) Split the dataset (c) 
Results attained during training (d) Results attained during testing 
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(a) 

 

(b) 

Figure 5: Object detection and classification results for a test image (a) Plant (b) Weed 

Figure 6 demonstrates a set of results attained by the HPTDL-WDAC algorithm under training 
and testing phase. 
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(a) 

 

(b) 

Figure 6: Confusion matrix for Classification analysis of HPTDL-WDAC approach              (a) 
Training phase (b) Testing phase 
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Figure 7 illustrates the detailed classification outcomes produced by the HPTDL-WDAC model. 
The empirical results demonstrate that the HPTDL-WDAC approach consistently performs well 
across all evaluated metrics. Specifically, on the testing dataset, the HPTDL-WDAC method 
achieved an accuracy of 98.85%, a precision of 98.43%, a recall of 99.21%, and an F1-score of 
98.82%. These metrics underscore the model's robustness and effectiveness in distinguishing 
between plants and weeds. 

 

Figure 7: Result analysis of HPTDL-WDAC approach 

To highlight the enhanced performance of the HPTDL-WDAC approach, a concise comparative 
analysis with recent models is presented in Table 2 and Figure 8. The experimental findings 
reveal that the Inception-v3, VGG-16, and RCNN models achieved accuracies of 89.67%, 
93.85%, and 95.13% respectively. However, the HPTDL-WDAC model demonstrated superior 
performance, achieving a notably higher accuracy of 98.85%. These comprehensive results and 
subsequent discussion clearly demonstrate that the HPTDL-WDAC model outperforms other 
models by a significant margin. 
 

Table 2: Comparison of HPTDL-WDAC technique with existing algorithms 

Models Accuracy  Precision Recall F1-score 

Inception-v3 89.67 89.23 90.75 89.62 

VGG-16 93.85 93.61 94.12 93.81 

RCNN 95.13 94.92 95.97 95.08 

98.85

98.4399.21

98.82

HPTDL-WDAC

Accuracy Precision Recall F1-score
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HPTDL-WDAC 98.85 98.43 99.21 98.82 

 

 

Figure 8: Comparative analysis of Proposed HPTDL-WDAC Model with Existing models 

5. Conclusion 

The study presented an advanced AI-powered weed detection system for precision farming, 
employing a series of sophisticated techniques to enhance the accuracy and efficiency of weed 
detection and classification. The pre-processing stage involved noise removal using a Gaussian 
Filter, which significantly improved the quality of the images by eliminating noise. Additionally, 
image resizing and class labelling were performed to standardize the inputs for the model. The 
core of the system is the RetinaNet model, renowned for its robust object detection capabilities. 
By leveraging the ADAM optimizer, the hyperparameters of the RetinaNet model were finely 
tuned, ensuring optimal performance. This comprehensive approach resulted in superior 
detection and classification accuracy, effectively distinguishing between plants and weeds. The 
empirical evaluation demonstrated that the proposed HPTDL-WDAC technique outperforms 
existing methods, such as Inception-v3, VGG-16, and RCNN, with a notable accuracy of 
98.85%. The findings underscore the potential of integrating advanced deep learning models 
with optimized pre-processing techniques to address the challenges in precision agriculture. This 
system not only enhances weed detection but also contributes to reduced herbicide usage, 
promoting more sustainable farming practices. As part of the future study, the efficiency of the 
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proposed method can be increased by integrating this weed detection model with autonomous 
agricultural equipment such as drones or robotic weeding tools to automate the weeding process. 
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