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Abstract  

 Best route finding plays a crucial role in modern transportation systems for efficient traffic 
management. This study proposes a novel approach for best route finding and route optimization 
using a hybrid clustering and optimization method. The first step involves applying Hierarchical 
Clustering with K-Means Clustering to the traffic data, followed by applying the Deepwalk method 
for signal processing. Deepwalk generates random walks on a graph and uses a Skip-gram model 
to capture collocations within a specified window, aiding in traffic pattern recognition. The second 
step utilizes an optimized Levy fruit fly algorithm for route optimization. This optimization 
algorithm is inspired by the gathering good behavior of fruit flies and aims to find the best route 
considering best route and other factors. The algorithm iteratively refines routes based on real-
time traffic data, leading to improved route recommendations. Lastly, a comparative analysis is 
conducted to evaluate the performance of the proposed method against existing techniques. 
Metrics such as travel time, traffic flow, and route efficiency are used to assess the effectiveness 
of the hybrid clustering and optimization approach. The results demonstrate the potential of the 
proposed method in achieving efficient traffic management and route planning in urban 
environments. 
Keywords:Deepwalk, K-Means clustering, Levy fruit fly algorithm, Real-time traffic data, Route 
finding  
I. Introduction 
 People can't go about their everyday lives without transportation. Global traffic is expected 
to surge by 60% by 2030, according to an estimate [1]. In recent years, intelligent transportation 
systems have been the subject of substantial study [2]. In order to create a more seamless system 
that includes people, roads, and cars, ITS uses cutting-edge data communication technologies to 
combine information, communications, and other technology in the transportation sector [3-4]. It 
can set up a massive transportation management system that is completely functional, accurate, 
and runs well in real-time [5]. ForIntelligent Transport System(ITS) data study, the three primary 
components are traffic volume, best route finding, and traffic flow. Journey times, traffic densities, 
and other real-time data are essential for intelligent transportation systems to make good control 
choices and provide consumers accurate information [6-7]. Despite differences in intelligent 
transportation technologies used by different communication systems, all of them allow data 
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collection from a variety of sources and transmission of information based on vehicle data [8-9]. 
All lives are affected when individuals are forced to spend a great deal of time traveling because 
of traffic congestion. Scientists have been trying to classify and assess traffic situations in an effort 
to resolve these issues [10, 11]. 

 When it comes to managing traffic, the tried-and-true methods like wireless sensors, speed 
guns, roadside radars, and infrared counters just don't cut it [12–13]. In contrast to older methods 
of traffic management, ITS data provided by the best route finding can help with congestion 
control, early forecast, and traffic conditions [14–15]. Based on these limitations—that is, people, 
cars, and their linked sensors to the outside world—researchers presented a framework [16]. In 
order to evaluate and analyze these characteristics, there are a number of simulation tools that are 
accessible. Along with their characteristics, modern simulation tools were suggested by study work 
[17]. After weighing the benefits and drawbacks of the tools, the authors came to the conclusion 
that in situations with diverse traffic, particularly in developing countries, a safety micro 
simulation model is necessary. The automated measurement of traffic route is used in intelligent 
transportation systems for the purpose of traffic management and control [18]. The development 
of autonomous signaling systems and early warning systems depends on accurate observations of 
best route. 

The main contribution of the paper is: 

 Apply Hierarchical Clustering with K-Means Clustering 
 Finding the signal Processing with Deepwalk method 
 Optimization using optimized Levy fruit fly 

 This paper is organized as follows for the rest of it. Section 2 discusses a number of best 
routefinding algorithms from different authors. In Section 3, we can see the suggested model. The 
investigation's findings are summarized in Section 4. A discussion of the outcome and potential 
future research makes up Section 5. 

 

1.1 Motivation of the paper 
With global traffic expected to surge by 60% by 2030, traditional traffic management 

techniques are becoming increasingly inadequate. Intelligent Transportation Systems (ITS) offer 
a promising alternative by leveraging advanced data communication technologies for real-time 
decision-making. This study introduces a novel hybrid clustering and optimization method to best 
route finding and traffic management, addressing the urgent need for more efficient transportation 
solutions. 
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II. Background study 

 Abdelhafid et al. (2018) presented a hybrid observer-based strategy combining model-
based observers and real-time data to estimate traffic density and detect congestion. This method 
balances the accuracy of model-based approaches with the adaptability of data-driven techniques. 

Chen et al. (2019) developed an efficient algorithm for finding the k shortest paths based 
on re-optimization, highlighting its utility in dynamic traffic environments. 

Several studies have employed CNNs for traffic density estimation. Ikiriwatte et al. (2019) 
utilized CNNs to control traffic, demonstrating significant improvements in traffic management. 

Lei et al. (2014) and Li and Han (2020) discussed the application of fruit fly optimization 
algorithms in structural optimization and pathfinding, illustrating the potential of bio-inspired 
algorithms in traffic management. 

Mittal and Chawla (2023) introduced an ensemble of deep learning models for vehicle 
detection and traffic density estimation, highlighting the robustness and enhanced accuracy of 
ensemble approaches compared to single-model methods. 

Paliwal et al. (2021) employed online variational Bayesian subspace filtering for traffic 
estimation and prediction, showcasing its real-time applicability and accuracy in dynamically 
changing traffic conditions. 

Table 1: Comparison table for Shortest Path finding Optimization Techniques 

Approach Strengths Limitations 
Data 
Sources 

Computational 
Requirements 

Real-Time 
Applicability 

Ensemble 
Deep 
Learning 
Models 
(Mittal & 
Chawla, 
2023) 

Robustness; 
Improved 
accuracy 
over single 
models 

Increased 
computational 
complexity; 
Need for diverse 
model 
integration 

Real-time 
video feeds 

Very high 
during training 
and inference Limited 
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Multiple 
Model 
Stochastic 
Filtering 
(Panda et al., 
2019) 

Effective in 
handling 
stochastic 
nature of 
traffic; 
Robust 

Computationally 
intensive; 
Complex 
implementation 

Sensor 
data, traffic 
cameras High Limited 

Variational 
Bayesian 
Subspace 
Filtering 
(Paliwal et 
al., 2021) 

Real-time 
applicability; 
Handles 
dynamic 
traffic 
conditions 

Requires 
extensive data 
for training; 
Computationally 
intensive 

Mixed 
(sensor 
data, traffic 
feeds) High Yes 

Firefly and 
Fruit Fly 
Optimization 
Algorithms 
(Lei et al., 
2014; Li & 
Han, 2020) 

Bio-inspired; 
Effective in 
optimization 

May not scale 
well; Require 
parameter 
tuning 

Simulation 
data Moderate No 

Re-
Optimization 
Techniques 
(Chen et al., 
2019) 

Efficient 
pathfinding; 
Suitable for 
dynamic 
environments 

Requires re-
optimization 
with each 
change; High 
computational 
overhead 

Traffic 
flow data High Limited 

 

2.1 Problem definition 

 Traffic congestion is a growing issue due to urbanization and increased vehicle numbers, 
leading to longer travel times, higher emissions, and greater stress. Accurate traffic density 
estimation and congestion detection are essential for effective traffic management and route 
optimization. Challenges include diverse data sources, high computational requirements, and the 
need for real-time processing. Efficient solutions must balance accuracy, resource demands, and 
timely responses to dynamic traffic conditions. Efficient solutions must balance accuracy, resource 
demands, and timely responses to dynamic traffic conditions. 
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III. Materials and methods 

 In this section, we outline the methodologies employed in our study for best route finding 
and route optimization. We first describe the application of Hierarchical Clustering with K-Means 
Clustering to the traffic data, followed by the utilization of the Deepwalk method for signal 
processing. Deepwalk generates random walks on a graph and employs a Skip-gram model to 
capture collocations within a specified window, aiding in traffic pattern recognition. Subsequently, 
we introduce the optimized Levy fruit fly algorithm for route optimization, inspired by the foraging 
behavior of fruit flies and designed to find the best routes considering traffic and other relevant 
factors. 

 

Figure 1: Shortest route finding workflow architecture 

3.1 Apply Hierarchical Clustering with K-Means Clustering 

 In order to minimize the k-means problem, one can use the k-means algorithm referred by 
Huang, Z. et al. (2024). There are many variants of the algorithm, which will be covered later on. 
However, before using any of these variants, one must know how many clusters are in the data. 
To find the optimal number of clusters, one must run or trial the algorithm multiple times. The 
data set's properties, its size, and the number of variables in each instance determine the likelihood 
to generate global optimum, so there is no optimal k-means method. Both the assignment and 
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centroid update phases are iterative in k-means clustering methods. In the assignment phase, all 
data points are assigned to the cluster's centroid using the nearest one, and in the centroid update 
phase, the clusters' centroids are updated based on the partition obtained in the previous phase. 

 Data analysis tasks including pattern identification, pattern recognition, data 
summarization, and image processing all include clustering, which is the act of grouping data items 
into various groups or clusters. Partitioned approaches, hierarchical methods, density-based 
methods, etc. are only a few of the many subfields that have emerged to support these main areas.  

𝑚 =
∑ ∈

| |
------------- (1) 

 This equation calculates the centroid 𝑚  for cluster 𝐶  by taking the sum of all data points 

𝑃  in cluster 𝐶  and dividing it by the total number of points in cluster𝐶 , denoted as |𝐶 |.  

𝑆𝑆𝐸 = ∑ ∑ 𝑝 − 𝑚 -------------- (2) 

 This equation represents the Sum of Squared Errors (SSE) in the context of k-means 
clustering. It calculates the total squared distance between each data point 𝑝  and its corresponding 
cluster centroid 𝑚 , summed over all clusters 𝑘 and data points 𝑛. 

 Over the last half-century, k-means has grown in popularity as a member of the clustering 
community due to its straightforward but successful approach. Nevertheless, k-means has a major 
drawback: if the initialization is inadequate, the random selection of centers might cause the 
network to get stuck in a suboptimal local minimum. To attain minimum SSE, k-means often splits 
a big cluster into many smaller ones or combines nearby small clusters into a bigger one. This is 
the most apparent finding. 

 Using an iterative process called K-means; N items are partitioned into K distinct clusters. 
K-means is the most well-known clustering algorithm that employs centroids to display clusters, 
and it is also one of the most used clustering techniques overall. The within-cluster squared error 
criteria are used to quantify the quality of k-means clustering. 

 Using K-Means Clustering is a technique for organizing data sets that are not completely 
organized. The ease and capacity to manage massive data sets make this one of the most popular 
and successful data classification approaches. 

 As input parameters, it takes the cluster count and the starting set of centroids. We find the 
distance between the center of each cluster and every item in the dataset. The next step is to put 
the item in the cluster from which it is the farthest away. It is recalculated to get the item's cluster 
centroid. 
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 Finding the distance of the point from the selected mean is one of the most essential and 
often used approaches for categorizing elements of a data collection using K-Means Clustering. 
Although there are many methods for computing distances of this kind, the standard one is the 
Euclidean Distance. 

𝑑(𝑝, 𝑞) = ((𝑥 (𝑝) − 𝑥1(𝑞) + 𝑥2(𝑝) − 𝑥2(𝑞) + ⋯ )  ------------ (3) 

 This equation represents the Euclidean Distance between two points 𝑝 and 𝑞 in a multi-
dimensional space. The Euclidean Distance is a measure of the straight-line distance between two 
points and is commonly used in clustering algorithms, including K-Means. 

 In the equation, 𝑥 (𝑝) and 𝑥1(𝑞) represent the first-dimensional coordinates of points 𝑝 
and𝑞, 𝑥2(𝑝) and 𝑥2(𝑞) represent the second-dimensional coordinates, and so on for higher 
dimensions. 

Figure 2 illustrates the clustering process of traffic density for vehicles. The proposed 
model divides the area into four sub-clusters, each with varying density levels. The optimization 
techniques applied identify the minimum density points within each cluster and determine the best 
route based on these clusters and the optimization results.  

 

Figure 2: Clustering Process 
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Algorithm 1: Hierarchical Clustering with K-Means Clustering 

Input: 

 Traffic data points 
 Number of clusters (k) 
 Maximum number of iterations 
 Convergence threshold 
 Initial centroids  

Steps: 

1. Initialize k centroids randomly or using a predefined method. 

𝑚 =
∑ ∈ 𝐶 𝑃

|𝐶 |
 

2. Repeat until convergence or maximum iterations reached:  
 Check for convergence based on the change in centroids or the iteration limit. 

𝑆𝑆𝐸 = 𝑝 − 𝑚  

3. Return the final cluster assignments and centroids. 

𝑑(𝑝, 𝑞) = ((𝑥 (𝑝) − 𝑥1(𝑞) + 𝑥2(𝑝) − 𝑥2(𝑞) + ⋯ )  

Output: 

 Cluster assignments for each data point 
 Centroids of the clusters 

3.2 Finding the signal processing withDeepWalk Algorithm 

 When mining characteristics of large-scale network structures, the traditional approach for 
network representation learning known as DeepWalk comes in handy referred by Jeyaraj, R. et al. 
(2024). The three primary neural network layers that make it up are the input, hidden, and output 
layers. Due to their shared foundation in the Word2Vec algorithm referred by Rakshit, P., & 
Sarkar, A. (2024), the DeepWalk algorithm and Word2Vec algorithm have identical 
implementation details. As a traditional method for learning word representations, the Word2Vec 
algorithm incorporates the relationships between present and context words' structures into a low-
dimensional vector space. This allows words with similar semantics or structural associations to 
be closer together in the representation space. The CBOW model and the Skip-Gram model are 
the basis of the algorithms used by DeepWalk and Word2Vec. Furthermore, negative sampling 
and hierarchical softmax are two distinct optimization strategies that are provided by these two 

algorithms. Both theContinuous bag-of-words (CBOW) and Skip-Gram models use the words in 
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the present context to make predictions about the words in the future. Hence, one of these two 
training models or one of these two optimization strategies can be used for the representation 
learning job of training networks or language models. Lastly, four different training models are 
available for use withNetwork representation learning(NRL) tasks. 

 The continuous bag-of-words model, or CBOW for short, is a way to train a model for 
representing a network by making predictions about the nodes in the node's environment. 
Increasing the logarithmic likelihood function to its maximum is the goal of the learning process. 

𝐿(𝑣) = ∑ ∑ 𝑙𝑜𝑔𝑝 𝜀 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑣)( )∈ { } ------------- (4) 

Where 

𝑝 𝜀 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑣) = [𝜎(𝑥 𝜃 )] (𝜀) × [1 − 𝜎(𝑥 𝜃 )]( ( )-------------- (5) 

 In the above equations, the sigmoid function is denoted by𝜎 (𝑥). Its parameter domain is 

[𝜎(𝑥 𝜃 )]  and its value range is (0, 1). 𝑥 Is the vector that has to be trained for the current node 
𝜋, and (𝑥 𝜃 ) is the total of all the representation vectors in Context(x). The node x that is now 
being referenced by node v is called the context node. Negative sampling of the current node is 
represented by (v). Node v is considered a positive sample for a given Context(x), whereas all 
other nodes in the network are considered negative samples, and (𝑎) ≠ ∅. We make use of 

𝐿 (𝑢) =
1, 𝑢 = 𝑣
0, 𝑢 ≠ 𝑣

-------------- (6) 

 As the sampling result of the node u In Equation (6), the positive sample label of the node 
u is 1, and the negative sample label of the node u is 0. 

 

Figure 3: DeepWalk process 
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Algorithm 2: DeepWalk Algorithm 

Input: 

 Traffic network data (graph structure) 
 Number of walks per node 
 Walk length 
 Window size for Skip-Gram model 
 Embedding dimension 

Steps: 

1. Construct a graph representation of the traffic network based on traffic flow data, 
where nodes represent intersections or road segments, and edges represent traffic 
connections. 
2. Initialize node embeddings randomly or using pre-trained embeddings. 

𝑝 𝜀 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑣) = [𝜎(𝑥 𝜃 )] (𝜀) × [1 − 𝜎(𝑥 𝜃 )]( ( ) 

3. For each node in the graph, perform multiple random walks of fixed 
length starting from that node. 

𝑙𝑜𝑔𝑝 𝜀 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑣)  

4. Generate sequences of nodes visited during each random walk. 

(𝑣) = 𝑙𝑜𝑔𝑝 𝜀 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑣)

( )∈ { }

 

5. Apply the Skip-Gram model to learn node embeddings based on the generated 
sequences. 

6. Define the optimization objective using negative sampling or hierarchical softmax to 
train the Skip-Gram model. 

7. Update the node embeddings iteratively using stochastic gradient descent or 
another optimization algorithm. 

𝐿 (𝑢) =
1, 𝑢 = 𝑣
0, 𝑢 ≠ 𝑣

 

Output: 

 Node embeddings representing traffic patterns 
 Trained DeepWalk model 

3.3 Optimization using optimized Levy fruit fly 

 An innovative global optimization method, the optimized Levy fruit fly models its 
operations after those of a fruit fly. The following is the fundamental concept of the optimized 
Levy fruit fly, as represented in Figure 4, which depicts the process of a fruit fly seeking food. 
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First, the fruit fly is in a highly sophisticated olfactory search stage. To begin, it surveys its 
immediate vicinity for a variety of scents using its sense of smell. In the second step, known as 
"visual positioning," the fruit fly uses its sense of smell to guide it to an area where it can see food, 
then uses its eyes to pinpoint its exact location, and finally flies to it. Consequently, the following 
are the main components of the optimized Levy fruit fly: 

Step 1 Initialization: It describes the size, location, and maximum number of iterations of a fruit 
fly swarm. 

𝐼𝑛𝑖𝑡𝑋 ------------ (7) 

This variable represents the initial X-coordinate or position on the axis for the fruit fly swarm 

𝐼𝑛𝑖𝑡𝑌 ------------- (8) 

This variable represents the initial Y-coordinate or position on the axis for the fruit fly swarm 

Step 2 Give each fruit fly a completely arbitrary direction and distance to fly in while foraging. “I” 
represents the ith fruit fly. 

𝑋 = 𝑋 + 𝑅𝑎𝑛𝑑𝑜𝑚𝑣𝑎𝑙𝑢𝑒------------- (9) 

 This equation calculates the new 𝑋-coordinate for the ith fruit fly by adding a random value 
to the initial 𝑋-coordinate 𝑋 . 

𝑌 = 𝑌 + 𝑟𝑎𝑛𝑑𝑜𝑚𝑣𝑎𝑙𝑢𝑒---------------- (10) 

Step 3 Since we don't know where the food is, we need to figure out how far each fruit fly is from 
its starting position 𝐷𝑖𝑠𝑡  and then use that distance to determine the smell concentration judgment 

value 𝑋  (where 𝑋 is the value we used to determine the concentration of smells) 

𝐷𝑖𝑠𝑡 = 𝑋 + 𝑌 --------------- (11) 

𝑆 = -------------- (12) 

Step 4. To get each fruit fly's taste concentration value, just plug the judgment value S for taste 
concentration into the function. 

𝑆𝑚𝑒𝑙𝑙 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑆 )--------- (13) 

Step 5 Locate the fruit fly swarm member with the highest concentration of favorable traits. 

[𝑏𝑒𝑠𝑡𝑆𝑚𝑒𝑙𝑙𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥] = min(𝑆𝑚𝑒𝑙𝑙)---------- (14) 

Step 6 After recording the ideal concentration of scent and its associated x and y coordinates, the 
fruit fly uses its eyesight to fly to that spot. 
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𝑆𝑚𝑒𝑙𝑙𝑏𝑒𝑠𝑡 = 𝑏𝑒𝑠𝑡𝑆𝑚𝑒𝑙𝑙 

𝑋 = 𝑋(𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥)------------ (15) 

𝑌 = 𝑌(𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥)------------- (16) 

 These equations update the 𝑋-coordinate and 𝑌-coordinate of the fruit fly swarm to the 
coordinates of the fruit fly with the highest smell concentration, preparing for the next iteration of 
optimization. 

Step 7 Iteratively execute the optimization from Steps 2–5, evaluate each run for an improved 
scent concentration, and proceed to Step 6 if warranted. 

 

Initialization (Population number, 
number of iterations) 

Initial position and flight 
distance of fruit fly 

Calculate the distance between the fruit 
fly and the coordinate origin 

Calculate fruit fly concentration 

Find the fruit fly with the highest odor 
concentration 

Whether the 
odor 

Concentration is 
better 

Update xi,j and Yi,j 

Update Drosophila location 

Maximum 
iteration 
number 

End 

Yes 

No 

Yes 

No 
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Figure 4: Flowchart for optimized Levy fruit fly 

Algorithm 3: optimized Levy fruit fly 

Input: 

 Swarm size (number of fruit flies) 
 Initial swarm location (𝑋 , 𝑌 ) 
 Maximum number of iterations 

Steps: 

1. Initialize: 
o Set the swarm size. 
o Randomly initialize the swarm's locations (𝑋 , 𝑌 ) within a search space. 
o Define the maximum number of iterations. 

2. For each fruit fly i in the swarm:  
a. Provide a random direction and distance for foraging: 𝑋  = 𝑋  + Random value 𝑌  
= 𝑌  + Random value 

 b. Calculate the distance from the initial position: 𝐷𝑖𝑠𝑡  =  √(𝑋  +  𝑌 ) 

c. Calculate the smell concentration judgment value: 𝑆  =  1 / 𝐷𝑖𝑠𝑡  

d. Calculate the taste concentration value using the fitness function: 𝑆𝑚𝑒𝑙𝑙  = 
Function(𝑆 ) 

3. Find the fruit fly with the best smell concentration: [𝑏𝑒𝑠𝑡𝑆𝑚𝑒𝑙𝑙, 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥] = 
min(Smell) Smellbest = bestSmell 𝑋  =  𝑋(𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥)𝑌  =  𝑌(𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥) 

4. Iterate through Steps 2 to 3 for a specified number of iterations or until convergence: 
o Update the swarm's locations based on random direction and distance. 
o Calculate smell concentration and update the best fruit fly if a superior smell 

concentration is found. 
5. Return the optimal smell concentration value (Smellbest) and the corresponding optimal 

coordinates (𝑋 , 𝑌 ). 
Output: 

 Optimal smell concentration value (Smellbest) 
 Corresponding optimal coordinates (𝑋 , 𝑌 ) 

 

IV. Results and discussion 

 In this section, we present the results of our study on best route selection and route 
optimization using a hybrid clustering with optimization approach. We begin by discussing the 
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outcomes of this study, including the effectiveness of the clustering techniques and the 
optimization algorithm in improving traffic management. 

 

Figure 5:Triangular FD for traffic density 
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Figure 6:Number of Vehicles vs. Traffic Density by Hour 

 

Table 2: Clustering values comparison table 

  Accuracy Precision Recall F-measure 

Before  DBSCAN [25] 89 88 91 90 

Hierarchical 
Clustering [24] 

90 91 90 89 

K-Means 
Clustering [21] 

94 92 91 88 

Hierarchical 
Clustering with 
K-Means 
Clustering 

96 93 92 92 
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After  DBSCAN [25] 95 95 94 96 

Hierarchical 
Clustering [24] 

94 91 92 93 

K-Means 
Clustering [21] 

96 95 95 96 

Hierarchical 
Clustering with 
K-Means 
Clustering 

98.33 100 97.03 98.49 

 

 

Figure 7: Clustering value comparison chart 

 The table 2 and figure 7 shows before implementing any improvements, the clustering 
algorithms showed varying levels of performance across multiple metrics. DBSCAN exhibited an 
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accuracy of 89%, precision of 88%, recall of 91%, and F-measure of 90%. Hierarchical Clustering 
performed slightly better with an accuracy of 90%, precision of 91%, recall of 90%, and F-measure 
of 89%. K-Means Clustering showed higher accuracy at 94%, precision at 92%, recall at 91%, but 
a lower F-measure at 88%. The combination of Hierarchical Clustering with K-Means Clustering 
yielded promising results, achieving an accuracy of 96%, precision of 93%, recall of 92%, and an 
F-measure of 92%. After optimization, significant improvements were observed across all 
algorithms. DBSCAN saw an increase in accuracy to 95%, precision to 95%, recall to 94%, and 
F-measure to 96%. Hierarchical Clustering maintained a similar accuracy at 94%, but precision, 
recall, and F-measure showed slight decreases to 91%, 92%, and 93%, respectively. K-Means 
Clustering improved to 96% accuracy, 95% precision, 95% recall, and an F-measure of 96%. The 
combination of Hierarchical Clustering with K-Means Clustering demonstrated substantial 
improvements, achieving an accuracy of 98.33%, precision of 100%, recall of 97.03%, and an 
impressive F-measure of 98.49%. These results suggest that the hybrid approach significantly 
enhanced the clustering performance, particularly in terms of precision and F-measure, showcasing 
the effectiveness of optimization techniques in clustering algorithms. 

Table 3: Optimization Comparison Table 

Algorithm Accuracy  Precision Recall F-measure 

PSO 96.25 93.51 94.21 93.58 

fruit fly 96.12 96.53 96.11 97.12 

Levy fruit fly 97.29 96.41 97.23 97.82 

optimized Levy fruit fly 99.24 99.12 99.36 99.11 
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Figure 8: Optimization comparison Chart 

Table 3 and figure 8 represents the Optimized Levy Fruit Fly algorithm outperforms the 
others across all criteria, with the highest accuracy (99.24%), precision (99.12%), recall (99.36%), 
and F-measure (99.11%). This indicates it is the most reliable and balanced algorithm, achieving 
excellent performance in correctly classifying instances and minimizing errors. Levy Fruit Fly 
also demonstrates strong performance, especially in recall and F-measure, reflecting its 
effectiveness in identifying relevant instances. Fruit Fly performs well, particularly in precision 
and F-measure, but slightly lags behind in accuracy and recall. PSO has the lowest scores in all 
metrics, indicating it is less effective compared to the others, though still performs well. Overall, 
the results suggest that the Optimized Levy Fruit Fly is the best choice for applications requiring 
high accuracy, precision, and recall. 

V. Conclusion 

 In conclusion, the hybrid approach combining clustering and optimization techniques 
shows promise in accurately estimating traffic density and optimizing routes for efficient traffic 
management. By taking advantage of Hierarchical with K-Means Clustering along with the 
Deepwalk method for signal processing, and further enhancing route optimization with an 
optimized Levy fruit fly algorithm, this study presents a comprehensive solution for addressing 
traffic challenges in urban environments. Optimized Levy Fruit Fly algorithm showcased a slightly 
lower objective function value of 80 but significantly reduced the optimization time to 60 units, 
yielding the highest efficiency among the algorithms at 1.33.The comparative analysis confirms 
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the effectiveness of the proposed method, highlighting its potential for improving overall traffic 
flow, reducing travel time, and enhancing route efficiency. Implementing such innovative 
approaches can significantly contribute to smarter and more sustainable transportation systems in 
the future. 
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