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Abstract 

The paper investigates Hyers-Ulam stability for impulsive second-order abstract functional 
differential systems with state-dependent delay. It derives its results from the framework of 
significantly constant cosine families of linear operators. The work establishes a number of 
definitions of Hyers-Ulam stability by utilising Gronwall’s type inequality and Lipschitz criteria. 
Theoretical derivations are proved by an example of a wave equation that successfully explains 
how the acquired results can be applied in practise. The study contributes to the understanding of 
stability occurrences in a specific class of functional differential systems by addressing 
complicated systems with impulsive dynamics and state-dependent delay, as well as by utilising 
rigorous mathematical techniques. 

Keywords: State-dependent delay, Functional differential equation, Impulsive systems, Hyers-
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1. Introduction  

The study of impulsive second-order abstract functional differential systems with state-dependent 
delay aims to develop conditions for stable solutions in the surface of impulsive effects and delay. 
Stability analysis includes determining solution existence, uniqueness, continuity, and 
boundedness in the presence of impulses. The investigation of Hyers-Ulam stability improves 
understanding of solution behaviour and robustness in setting involving impulsive effects and 
state-dependent delay. The results of such investigations provide essential insights applicable to 
the design and control of dynamical systems in a variety of disciplines. As a result, investigating 
Hyers-Ulam stability within these systems is a significant challenging research field with far-
reaching applications. This subject of study links theoretical exploration with real-world 
application, emphasising its importance in understanding and manipulating complex dynamical 
behaviours, especially under difficult settings. 

An extremely important investigation concerns the Hyers-Ulam stability, which was first 
investigated using functional equations. This narrative began with the Ulam issue, which Ulam 
proposed at Wisconsin University in 1940. Hyers, who pioneered this discussion, offered the first 
solution in 1941, establishing the concept of stability for functional equations. 

Since then, an array of mathematicians(1,2) have worked tirelessly to investigate the stability 
of various functional equations and their pragmatic applications, as documented in Rassia’s work 
in 2014.Wang et.al.(18) expanded the scope of Hyers-Ulam stability to include ordinary linear 
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differential equation in 1993, describing it as the presence of an approximative solution close to 
the precise solution. Finally, numerous worldwide authors(5,6,9,11,12) have thoroughly examined the 
Hyers-Ulam stability, including its first and higher order differential equation variations, 
contributing to a full understanding of this paradigm. 

Delay differential equations with state-dependent delays develop naturally in a variety of 
modelling contexts. For example, they are used to simulate infection and illness transmission, 
immunological responses, and respiration. These delays are caused by the time it takes to 
accumulate sufficient infection or antigen concentration. 

In mathematical modelling, the differential equations with impulses theory have received 
a lot of popularity. Many real-world processes undergo sudden state shifts at critical points. Within 
the system, these processes experience transitory disturbances known as impulsive effects. 
Numerous researchers, including Samoilenko and Perestyuk(13), Lakshmikantham,   et.al.(7), 
Rogovchenko(10) and Wang et.al.(16), have descending into the world of differential equations with 
impulses in recent years, indicating an increasing interest in this area. 

Akbar Zada, Luqman Alam, Jiafa Xu, and Wei Dong investigated a damped second-order 
abstract impulsive differential equation system. Their goal was to explore its Hyers-Ulam stability. 
They achieved this by employing a specific version of Gronwall’s inequality and Lipschitz 
conditions. 

In 2018, E. Hernandez et.al.(3) established the existence and distinctiveness of the following 
solution:  

𝜗”(τ) =  𝐴𝜗(𝜏) +  𝔉 𝜏, 𝜗 ( , ) ,   𝜏 𝜀 [0, 𝑏]                                      (1.1) 

𝜗(0) = 𝜚 ∈ 𝐶([−𝛾, 0]; 𝑋), 𝜗 (𝑂 ) = 𝑥 ∈ 𝑋                                      (1.2) 

∆𝜗(𝜏 ) = 𝐼 𝜗 ,   𝑘 = 1,2,3, … 𝑛                                                       (1.3) 

∆𝜗 (𝜏 ) = 𝐽 𝜗 ,   𝑘 = 1,2,3, … 𝑛                                                      (1.4) 

The objective of the paper is to identify the criteria that guarantee Hyers-Ulam stability for the 
impulsive second-order abstract functional differential systems with state-dependent delay. The 
main goal is to apply rigorous mathematical approaches such as fixed-point theory, Lyapunov 
functional methods, and comparison principles. These methods are used to determine appropriate 
stability conditions. The investigation includes both continuous and discrete impulsive scenarios, 
with stability analysis performed in each case. The results of the gained stability improve 
understanding of the dynamic behaviour of impulsive second-order abstract functional differential 
systems with state-dependent delay. These outcomes have significance for the structure and control 
of real-world systems involving impulsive effects and state-dependent delays. The findings have 
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implications for designing and maintaining real-world systems in which impulsive affects and 
delays based on the system’s state are relevant. The beginning part of this research study gives the 
necessary symbol representations, definitions, and outcomes for the present research.  

2. Basic preliminaries  

In this part, several definitions and statements may be utilized in the basic results. Throughout the 
research paper, we employed (𝑋, ∥. ∥) is a Banach space and 𝐴: 𝐷(𝐴)  ⊂  𝑋 → 𝑋 is the 
infinitesimal generator of (𝒞(𝜏) ∈ℝ) of linear bounded operators on 𝑋. It is denoted that 

(𝑝(𝜏))_(𝑇 ∈ 𝑅) the sine functions with 𝒞(𝜏)
∈ℝ

, is described by          ℘(𝜏)𝑥 = ∫ 𝒞(𝜏)𝑥𝑑𝜏, for 

𝑥 ∈ 𝑋 and 𝜏 ∈ 𝑅 . Furthermore, 𝑀 and 𝑁 are significant constant to the extent that ∥ 𝒞(𝜏) ∥ ≤ 𝑀 
and  ∥ ℘(𝜏) ∥≤ 𝑁, for each 𝜏 ∈ 𝐼. It is assumed that 𝜑 ∈ 𝐵 and that 𝜎 ∶ 𝐼 ×   𝐵 → (−∞, 𝑏] is 
continuous function. The symbol E indicates the space of vectors 𝑥 ∈  𝑋 for which  𝒞(. )𝑥 is of 
𝐶 . 

Definition 2.1 A function 𝜗(. ) is said to be a mild solution of (1.1)–(1.4) if  𝜗 = 𝜚, 𝜗
( , )

∈

𝐵 for every 𝑠 ∈ 𝐼 and  

𝜗(𝜏) = 𝒞(𝜏)𝜚 + ℘(𝜏)

+ ℘ 𝜏 − 𝑠𝔉 𝜏, 𝜗 ( , ) 𝑑𝑠 + 𝒞(𝜏 − 𝜏 )𝐼 (𝜗(𝜏 )

   

+ ℘ (𝜏 − 𝜏 )𝐽 (𝜗(𝜏 )                                                                                    (2.5) 

In the section, the following assumptions are examined: 

𝐇𝝋 Let ℛ(𝜎 ) = {𝜎(𝑠, 𝜓) ∶ (𝑠, 𝜓) ∈ 𝐼 × 𝐵, 𝜎(𝑠, 𝜓) ≤ 0}. The function 𝑡 → 𝜑  is well defined 

from ℛ(𝜎 ) into B, there is a continuous and bounded function 𝐽 ∶ ℛ(𝜎 ) → ℝ such that as ∥
𝜑 ∥ ≤ 𝐽 (𝑡) ∥ 𝜑 ∥  for every 𝑡 ∈ ℝ(𝜎 ). 

𝐇  The function f: 𝐼 × 𝐵 → 𝑋 full fills the following conditions: 

(i) Let 𝑥 ∶  (−∞, 𝑏]  →  𝑋 be such that 𝑥 = 𝜑 and 𝑥| ∈ 𝒫𝒞. the function                  t 
→ 𝑓(𝑡, 𝑥 ( , )) is measurable on I and the function 𝑡 → 𝑓(𝑠, 𝑥 ) is continuous on 

ℛ(𝜎 )⋃𝐼 for every 𝑠 ∈  𝐼. 
(ii) For each 𝑡 ∈  𝐼, the function 𝑓(𝑡,⋅) ∶ 𝐵 → 𝑋 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠. 
(iii) There is an integrable function ℎ: 𝐼 → [0, ∞) and a continuous non-decreasing 

function 𝑊: [0, ∞) → (0, ∞) such that  
                ∥ 𝔉(𝑡, 𝜓) ∥ ≤ ℎ(𝑡)𝑊(∥ 𝜓 ∥ ), (𝑡, 𝜓)𝜀 𝐼 × 𝐵                     

(iv) There exists 𝐿𝔉 > 0 such that  

∥ 𝔉(𝑡, 𝜓 ) − 𝔉(𝑡, 𝜓 ) ∥ ≤ 𝐿𝔉 ∥ 𝜓 − 𝜓 ∥ ,     𝑡 ∈ 𝐼, 𝜓 , 𝜓 ∈ 𝐵                      (2.6)   
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Definition 2.2    Let V be a vector space over some field K. 

A function ∥⋅∥ : 𝑉 → [0, ∞) is called 𝛽 − norm if: 

       (a):∥ 𝜛 ∥ = 0 if and only if 𝜛 = 0, 

       (b):∥ 𝑐𝜛 ∥ = |𝜛| ∥ 𝜛 ∥  for each c ∈ K and u ∈ V, 

        (c):∥ 𝜛 + 𝑣 ∥ ≤ ∥ 𝜛 ∥ +∥ 𝑣 ∥ . 

Then, (V,∥⋅∥ ) is known as 𝛽 −normed space. A certain required condition may be utilised in 

research findings. 

 𝐇𝟐  A is the infinitesimal generator of 𝒞(𝜏) ∈ 𝑅. 

 𝐇𝟑  The functions 𝐼 , 𝐽 ∶ 𝑋 → 𝑋 are continuous and there prevail positive constants 𝐿  and 
         𝐿  such that: 

 ∥ 𝐼 (𝜛) − 𝐼 (𝑣) ∥ ≤ 𝐿 ∥ 𝜛 − 𝑣 ∥, ∥ 𝐽 (𝜛) − 𝐽 (𝑣) ∥ ≤ 𝐿 ∥ 𝜛 − 𝑣 ∥                                (2.7) 𝐇𝟒 

There exists a increasing function 𝜚 ∈ 𝑃𝐶(𝐼, 𝑆) with 𝜚(𝜏) ≥ 0 and a constant 𝑐  such that,                           

∫ 𝜚(𝜏)𝑑𝜏 ≤ 𝑐 𝜚(𝜏)                                                                                                                           (2.8)                                                                                       

For each 𝜏 ∈ 𝐼 and 𝜏 ∈ 𝑆. 

Remark 2.1 In the paper 𝑦 ∶ +(−∞, 𝑏] → 𝑋 is the function specified by 𝑦(𝑡)  =  𝜑(𝑡) on (−∞, 0] 

and 𝑦(𝑡)  =  𝒞(𝑡)𝜑(0) +  ℘(𝑡)𝜁  for 𝑡 ∈  𝐼. Besides, ∥ 𝑦 ∥  , 𝑀 , 𝐾 , 𝑎𝑛𝑑 𝐽  are the constant 

characterised by ∥ 𝑦 ∥ = sup
∈[ , ]

∥ 𝑦(𝑠) ∥, M = sup
∈[ , ]

𝑀(𝑠),                    𝐾 = sup
∈[ , ]

𝐾(𝑠) and 

𝐽 = sup
∈ℛ(  )

𝐽 (𝑡) are discussed further. 

Lemma 2.1   [24, Lemma 2.1] Let x (-∞, 𝑏) → 𝑋 be a function such that 𝑥 = 𝜑 and x| ∈ 𝑃𝐶. 
Then,  

       ∥ 𝑥 ∥ ≤ 𝑀 + 𝐽 ∥ 𝜑 ∥  + 𝐾 sup{∥ 𝑥(𝜏) ∥ ; 𝜏 ∈ [0, max{0, 𝑠}]} ,    𝑠 ∈ ℛ(𝜎 )⋃𝐼.   

Lemma 2.2 It is presumed that all the inferences listed in Lemma 3.1 are accomplished. At that 
time the operator  

Γ (𝜏) = ∫ ℘(𝜏 − 𝑠 ) 𝑓 𝑠, 𝛾(𝑠) + 𝐷𝑢 (𝑠) 𝑑𝑠,   𝜏 ∈ [0, 𝜌]                                                 (2.9)                                       

Is completely continuous.  

Lemma 2.3 Predict that 𝜁 is a condensing operator on X.  𝐼𝑓 𝜁(𝐴) ⊂ 𝐴 is closed, bounded and 
convex set of X, then 𝜁 has a fixed point in A.  
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Lemma 2.4 (Gronwall’s Lemma25) for any 𝜏 ≥ 0 with  

𝜗(𝜏) ≤ 𝑞(𝜏) + ∫ 𝒫(𝑠)𝜗(𝑠)𝑑𝑠 + ∑ 𝛾 𝜗(𝜏 )                                                                (2.10)                                   

Where s, p, q ∈ 𝑃𝐶(𝐼, ℝ ), 𝑞 is increasing and 𝛾 > 0, it is obtained as   

𝜗(𝜏) ≤ 𝑞(𝜏)(1 + 𝛾 ) 𝑒∫ ( ) , ∀𝛾 ∈ ℝ                                                                                   (2.11)                                 

Where k∈ 𝑀.          

3. Ulam’s Type Stability  

Hernandez et.al.(4) establish the solution for the system: 

                            𝜗 = 𝐴𝜗 +  𝔉(𝜏, 𝜗 ) 

                           ∆𝜗(𝜏 ) = 𝐼 𝜗(𝜏 ) ,   k = 1,2,3, …, n                                                             (3.12) 

                           ∆𝜗 (𝜏 ) = 𝐽 𝜗(𝜏 ) ,  k= 1, 2, 3, …, n  

                                  𝜗(0) = 𝜚, 𝜗(0) = 𝑥 

In the form 

𝜗(𝜏) = 𝒞(𝜏)𝜚 + ℘(𝜏)𝑥 + ℘(𝜏 − s)𝔉(𝜏, 𝜗 ( , ))𝑑𝑠 + 𝒞(τ − τ )𝐼 𝜗(𝜏 )

+ ℘(𝜏 − 𝜏 )𝐽 (𝜗(𝜏 ))                                                                                (3.13) 

Let 𝜖 > 0, 𝜓 ≥ 0 𝓈 𝜚 ∈ 𝑃𝐶(𝐼, 𝑅 ) be the increasing functions. The below mentioned inequalities 
are considered  

∥ 𝑟 − Ar(τ ) − 𝔉 τ, ϑ ( , ) ∥≤ ϵ,              τ ∈ I

∥ ∆𝑟(𝜏 ) − 𝐼 𝑟(𝜏 ) ∥≤ 𝜖,                           𝜏 ≠ 𝜏

∥ ∆𝑟 (𝜏 ) − 𝐽 𝑟(𝜏 ) ∥≤ 𝜖,                           𝜏 ≠ 𝜏

                                                               (3.14)                              

  And  

⎩
⎪
⎨

⎪
⎧ ∥ 𝑟 − 𝐴𝑟(𝜏 ) −\𝔉 𝜏, 𝜗 ( , ) ∥≤ 𝜖,       τ ∈ I

 
∥ ∆𝑟(𝜏 ) − 𝐼 𝑟(𝜏 ) ∥≤ 𝜖,                      𝜏 ≠ 𝜏   

∥ ∆𝑟 (𝜏 ) − 𝐽 𝑟(𝜏 ) ∥≤ 𝜖                     𝜏 ≠ 𝜏

                                                                    (3.15)                                  

Remark 3.1  It has a direct impact of inequality (3.14) that a function 𝛾 ∈ 𝑍 is a solution for the 
inequality (3.14), if and only if there are G∈ 𝐶 (I , X), 𝑔 ∈ 𝐶(𝐼, 𝑋) and 𝑔 ∈ 𝐶 (𝐼 , 𝑋) like 
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⎩
⎪
⎨

⎪
⎧

∥ 𝐺(𝜏) ∥≤ 𝜖, ∥ 𝑔 (𝜏) ∥≤ 𝜖   𝓈 ∥ 𝑔 (𝜏) ≤ 𝜖, 𝜏 ∈ 𝐼                                    

𝑟 (𝜏) = 𝐴𝑟(𝜏) + 𝔉 𝜏, 𝜗 ( , ) + 𝐺(𝜏), 𝜏 ∈ 𝐼, 𝜏 ≠ 𝜏 , 𝑘 = 1, 2, … 𝑛

𝑟(0) = 𝜚 + 𝐺(𝜏), 𝑟 (0) = 𝑥 + 𝐺(𝜏)                                                       

∆𝑟(𝜏 ) = 𝐼 𝑟(𝜏 ) + 𝑔 (𝜏 ), 𝑘 = 1, 2, … . 𝑛                                     

∆𝑟 (𝜏 ) = 𝐽 (𝑟(𝜏 )) + 𝑔2(𝜏 ), 𝑘 = 1, 2, … 𝑛                                      

                              (3.16)   

Definition 3.1. The system (3.12) is Hyers-Ulam (HU) stable if abides ϑ(K , L , L ) > 0 likewise 

for each ϵ > 0 and every solution Υ ∈ Z of the inequality (4.3), a solution ϑ ∈ Z of equation (3.12) 
is found, such as 

∥ Υ(𝜏) − 𝜗(𝜏) ∥≤ 𝜗 𝑘 , 𝐿 , 𝐿 𝜖,    𝜏 ∈ 𝐼                                                                                    (3.17)                                          

Definition 3.2 The equation (3.12) is Hyers-Ulam-Rassias (HUR) stable in connection with (𝜚, 𝜓) 
if it exists 𝜗(𝐾 , 𝐿 , 𝐿 , 𝜚) > 0 such as for each   𝜖 > 0 and every solution Υ ∈ 𝑍  of the inequality 

(4.4), a solution 𝜗 ∈ 𝑍 of equation (3.12) is found, and said that 

∥ Υ(𝜏) − 𝜗(𝜏) ∥≤ 𝜗 𝐾 , 𝐿 , 𝐿 𝜖(𝜚(𝜏) + 𝜏𝜓),     𝜏 ∈ 𝐼                                                           (3.18)                               

Definition 3.3 The equation (3.12) β − HUR stable with respect to (ϱ , ψ ) if it exists 
ϑ(K , L , L , ϱ, ψ) > 0 such as for each ϵ > 0, and every solution Υ ∈ Z of the inequality (4.4), 

there is a solution ϑ ∈ Z of equation (3.12), like 

∥ Υ(𝜏) − 𝜗(𝜏) ∥≤ 𝜗 𝐾 , 𝐿 , 𝐿 , 𝜚, 𝜓 𝜖(𝜚(𝜏) + 𝜏𝜓), 𝜏 ∈ 𝐼                                                       (3.19)                         

Theorem 3.1 If inferences [𝐻 ] and [𝐻 ] – [𝐻 ] are satisfied, then the equation (3.12) is Hyers 

Ulam stable concerning 𝜖.  

Proof: Based on the remark 3 .1, it is said that solution of the system (3.16) is 

  𝛾(𝜏) = 𝒞(𝜏)𝜚 + ℘(𝜏)𝑥 + ∫ ℘(𝜏 − 𝑠)𝔉 𝜏, 𝛾 ( , ) 𝑑𝑠 + ∑ 𝒞(𝜏 − 𝜏 )𝐼 (𝛾(𝜏 )) +

                                                   ∑ ℘(𝜏 − 𝜏 )𝐽 (𝛾(𝜏 ))   

             = 𝒞(𝜏)𝑟(0) + ℘(𝜏)𝑟 (0 ) + ∫ ℘(𝜏 − 𝑠)𝔉 𝜏, 𝛾 ( , ) 𝑑𝑠 

+ 𝒞(𝜏 − 𝜏 )𝐼 𝛾(𝜏 ) +   ℘(𝜏 − 𝜏 )𝐽 𝛾(𝜏 )  

             = 𝒞(𝜏)[𝜚 + 𝐺(𝜏)] + ℘(𝜏)[𝑥 + 𝐺(𝜏)] + ∫ ℘(𝜏 − 𝑠)[𝔉 𝜏, 𝛾 ( , ) + 𝐺(𝑠)]𝑑𝑠 

                         + ∑ 𝒞(𝜏 − 𝜏 ) 𝐼 𝛾(𝜏 ) + 𝑔 (𝜏 ) + ∑ ℘(𝜏 − 𝜏 )[𝐽 𝛾(𝜏 ) 𝑔 (𝜏 )] 

Let 𝛾 be the solution of inequality (3.14). Further for every 𝜏 ∈ 𝐼, it is obtained  
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 ∥ 𝛾(𝜏) − 𝒞(𝜏)𝜚 − ℘(𝜏)𝑥 − ∫ ℘(𝜏 − 𝑠)𝔉 𝜏, 𝛾 ( , ) 𝑑𝑠 − ∑ 𝒞(𝜏 − 𝜏 )𝐼 𝛾(𝜏 ) −

                                ∑ ℘(𝜏 − 𝜏 )𝐽 𝛾(𝜏 ) ∥ ≤ 𝑀𝜖 + 𝑁𝜖 + 𝑁𝜖 ∫ 𝑑𝑠 + 𝜖𝑀𝜏 + 𝜖𝑁𝜏 

                               ≤ 𝜖[𝑀 + 𝑁] + 𝜖𝑁𝜏 + 𝜖𝑀𝜏 + 𝜖𝑁𝜏 

                               ≤ 𝜖(𝑀 + 𝑀 + 2𝑁 )                                                                                      (3.20)  

Henceforth, for each 𝜏 ∈ 𝐼 is obtained as 

 ∥ 𝛾(𝜏) − 𝜗(𝜏) ∥ ≤ ∥ 𝒞(𝜏)𝐺(𝜏) ∥ + ∥ ℘(𝜏)𝐺(𝜏) ∥ +∥ ∫ ℘(𝜏 − 𝑠)𝐺(𝑠)𝑑𝑠 ∥  + ∥ ∫ ℘(𝜏 −

𝑠) 𝔉 𝜏, 𝛾 ( , ) − 𝔉 𝜏, 𝜗 ( , ) 𝑑𝑠 ∥ +∥ ∑ 𝒞(𝜏 − 𝜏 ) 𝐼 𝛾(𝜏 ) − 𝐼 𝜗(𝜏 ) ∥ +∥

∑ ℘(𝜏 − 𝜏 ) 𝐽 𝛾(𝜏 ) − 𝐽 𝜗(𝜏 ) ∥ +∥ ∑ 𝒞(𝜏 − 𝜏 )𝑔 (𝜏 ) ∥  + ∥ ∑ ℘(𝜏 −

𝜏 )𝑔 (𝜏 ) ∥                                                                                                                      ≤ (𝑀 + 𝑁)𝜖 +

𝜖𝑁𝜏 + 𝑁 ∫ 𝐿𝔉(𝑠) ∥ 𝛾(𝑠) − 𝜗(𝑠) ∥ 𝑑𝑠 + 𝑀 ∑ 𝐿 ∥ 𝛾(𝜏 ) − 𝜗(𝜏 ) ∥  + 𝑁 ∑ 𝐿 ∥

𝛾(𝜏 ) ∥  + 𝜖𝑀𝜏 + 𝜖𝑁𝜏 

                   ≤ 𝜖(𝑀 + 𝑀 + 2𝑁𝜏) + 𝑁 ∫ 𝐿𝔉(𝑠) ∥ 𝛾(𝑠) − 𝜗(𝑠) ∥ 𝑑𝑠 

                                            2𝑀 ∑ 𝐿 ∥ 𝛾(𝜏 ) − 𝜗(𝜏 ) ∥                                                     (3.21)                                                                 

Where 𝑀 = max{𝑀, 𝑁} 𝑎𝑛𝑑 𝐿 = max 𝐿 , 𝐿 . 

Using lemma 2.4, 

                  ∥ 𝛾(𝜏) − 𝜗(𝜏) ∥≤ 𝜖[𝑀 + 𝑀 + 2𝑁 ][1 + 2𝑀 𝐿 ] 𝑒 [∫ 𝔉( ) ] 

                                               ≤ 𝜖𝑉 𝐾 , 𝐿 , 𝐿𝔉                                                                                (3.22)                                                                          

Where V(𝐾 , 𝐿 , 𝐿 ) = [𝑀 + 𝑀 + 2𝑁 ][1 + 2𝑀 𝐿 ] 𝑒 [∫ 𝔉( ) ] Therefore, the equation 
(3.12) is Hyers Ulam stable. 

Remark 3.2 

⎩
⎪
⎨

⎪
⎧

∥ 𝐺(𝜏) ∥≤ 𝜖𝜚(𝜏) ,          ∥ 𝑔 (𝜏) ∥≤ 𝜖𝜓    𝓈 ∥ 𝑔 (𝜏) ∥≤ 𝜖𝜓

𝑟 (𝜏) = 𝐴𝑟(𝜏) + 𝔉 𝜏, 𝜗 ( , ) + 𝐺(𝜏),       𝜏 ∈ 𝐼,    𝜏 ≠ 𝜏

𝑟(0) = 𝜚 + 𝐺(𝜏),                                          𝑟 (0) = 𝑥 + 𝐺(𝜏) 

∆𝑟(𝜏 ) = 𝐼 𝑟(𝜏 ) + 𝑔 (𝜏 )                                                    

∆𝑟 (𝜏 ) = 𝐽 𝑟(𝜏 ) + 𝑔 (𝜏 )                                                   

                                              (3.23)                                                    

Theorem 3.2 If assumptions [𝐻 ] - [𝐻 ] are redeemed, in addition the equation (3.12) is HUR 
stable concerning (𝜚, 𝜓). 
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Proof: If 𝛾 is a solution of the inequality (3.15) and 𝜗 is the unique solution of the system (3.12), 
which is mentioned in (3.13). Based on the Remark (3.2), the solution of the system (3.23) is 
referred as  

               𝛾(𝜏) = 𝒞(𝜏)𝜚 + 𝐶(𝜏)𝐺(𝜏) + ℘(𝜏)𝑥 + ℘(𝜏)𝐺(𝜏) + ∫ ℘(𝜏 − 𝑠)𝐹(𝜏, 𝛾 )𝑑𝑠 

                           + ∫ ℘(𝜏 − 𝑠)𝐺(𝑠)𝑑𝑠 + ∑ 𝒞(𝜏 − 𝜏 )𝐼 𝛾(𝜏 ) + ∑ 𝒞(𝜏 − 𝜏 )𝑔 (𝜏 ) 

                            + ∑ ℘(𝜏 − 𝜏 )𝐼 𝛾(𝜏 ) + ∑ ℘(𝜏 − 𝜏 )𝑔 (𝜏 )                          (3.24)                                 

If 𝛾 is a solution of (3.15), then for each 𝜏 ∈ 𝐼 is obtained as  

   ∥ 𝛾(𝜏) − 𝒞(𝜏)𝜚 − ℘(𝜏)𝑥 − ∫ 𝑆(𝜏 − 𝑠)𝔉(𝜏, 𝛾 )𝑑𝑠 − ∑ 𝒞(𝜏 − 𝜏 )𝐼 𝛾(𝜏 ) −

                                        ∑ ℘(𝜏 − 𝜏 )𝐽 𝛾(𝜏  ) ∥ ≤ ∥ 𝒞(𝜏)𝐺(𝜏) ∥ +∥ ℘(𝜏)𝐺(𝜏) ∥ 

                 +∥ ∫ ℘(𝜏 − 𝑠)𝐺(𝑠)𝑑𝑠 ∥ +∥ ∑ 𝒞(𝜏 − 𝜏 )𝑔 (𝜏 ) ∥  ∥ ∑ ℘(𝜏 − 𝜏 )𝑔 (𝜏 ) ∥ 

                      ≤ 𝑀𝜖𝜚(𝜏) + 𝑁𝜖𝜚(𝜏) + 𝑁 ∥ ∫ 𝐺(𝑠)𝑑𝑠 ∥ + 𝑀𝜏𝜖𝜓 + 𝑁𝜏𝜖𝜓 

                      ≤ (𝑀 + 𝑁)𝜖𝜚(𝜏) + 𝑁 ∥ ∫ 𝜖𝜚(𝑠)𝑑𝑠 ∥ + (𝑀 + 𝑁)𝜏𝜖𝜓 

                       ≤ 𝑀 𝜖𝜚(𝜏) + 𝑁𝜖𝐶 𝜚(𝜏) + 𝑀𝜏𝜖𝜓 + 𝑁𝜏𝜖𝜓 

                      ≤ 𝜖[𝜚(𝜏) + 𝜏𝜓] 𝑀 + 𝑁𝐶 . 

Hence, for each 𝜏 ∈ 𝐼, is obtained as 

∥ 𝛾(𝜏) − 𝜗(𝜏) ∥ ≤ ∥ 𝒞(𝜏)𝐺(𝜏) ∥  + ∥ ℘(𝜏)𝐺(𝜏) ∥  + ∥ ℘(𝜏 − 𝑠)𝐺(𝑠)𝑑𝑠 ∥ 

                              + ∫ ℘(𝜏 − 𝑠) 𝔉 𝜏, 𝛾 ( , ) − 𝔉 𝜏, 𝜗 ( , ) 𝑑𝑠 ∥ 

                              +∥ ∑ 𝒞(𝜏 − 𝜏 ) 𝐼 𝜗(𝜏 ) ∥  + ∥ ∑ 𝒞(𝜏 − 𝜏 )𝑔 (𝜏 ) ∥ 

                              +∥ ∑ ℘(𝜏 − 𝜏 ) 𝐽 𝛾(𝜏 ) − 𝐽 𝜗(𝜏 ) ∥ + ∥ ∑ ℘(𝜏 −)𝑔 (𝜏 ) ∥ 

                               ≤ [𝑀 + 𝑁]𝜖𝜚(𝜏) + 𝑁 ∥ ∫ 𝜖𝜚(𝑠)𝑑𝑠 ∥ + 𝑀𝜏𝜖𝜓 + 𝑁𝜏𝜖𝜓 + 

                                𝑁 ∫ 𝐿𝔉(𝑠) ∥ 𝛾(𝑠) − 𝜗(𝑠) ∥ 𝑑𝑠 + 2𝑀 ∑ 𝐿 ∥ 𝛾(𝜏 ) − 𝜗(𝜏) ∥  ≤

𝜖[𝜚(𝜏) + 𝜏𝜓] 𝑀 + 𝑁𝑐 + 2𝑀 ∑ 𝐿 ∥ 𝛾(𝜏 ) − 𝜗(𝜏 ) 

+𝑁 𝐿𝔉(𝑠) ∥ 𝛾(𝑠) − 𝜗(𝑠) ∥ 𝑑𝑠,                                                                                                 (3.25) 

Where  𝑀 = max(𝑀, 𝑁)  𝑎𝑛𝑑  𝐿 = max 𝐿 , 𝐿 . Through using lemma 2.4, is fulfilled as  
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        ∥ 𝛾(𝜏) − 𝜗(𝜏) ∥ ≤ 𝜖[𝜚(𝜏) + 𝜏𝜓] 𝑀 + 𝑁𝑐 [1 + 2𝑀 𝐿 ] 𝑒 ∫ 𝔉( )   

                 ≤ 𝑘  , 𝐿 , 𝐿𝔉, 𝜚 𝜖[𝜚(𝜏) + 𝜏𝜓],                                                                                     (3.26)                                                              

Where 𝑉[𝑘 , 𝐿 , 𝐿 , 𝜚] = 𝑀 + 𝑁𝑐 [1 + 2𝑀 𝐿 ] 𝑒 ∫ 𝔉( ) . 

Therefore, the system is HUR stable in regarded to [𝜚, 𝜓]. 

Theorem 3.3 If assumptions [H1]-[H3] and definition (2.2) are achieved, then equation (3.12) is 

𝛽 − 𝐻𝑈𝑅 stable concerning (𝜚 , 𝜓 ). 

Proof: Let 𝛾 be a findings for the inequality (3.15) and 𝜗 be a unique solution of the system (3.12), 
which is mentioned in (3.13). Based on the Remark 3.2, the solution of the system (3.15) is  

        𝛾(𝜏) = 𝒞(𝜏)[𝜚 + 𝐺(𝜏)] + ℘(𝜏)[𝑥 + 𝐺(𝜏)] + ∫ ℘(𝜏 − 𝑠)[𝔉 𝜏, 𝛾 ( , ) + 𝐺(𝑠)]𝑑𝑠 

                  + ∑ 𝒞(𝜏 − 𝜏 )[𝐼 𝛾(𝜏 ) + 𝑔 (𝜏 )] + ∑ ℘(𝜏 − 𝜏 )[𝐽 𝛾(𝜏 ) + 𝑔 (𝜏 )] 

If 𝛾 is a solution for (3.15), then for each 𝜏 ∈ 𝐼, is fulfilled as  

   ∥ 𝛾(𝜏) − 𝒞(𝜏)𝜚 − ℘(𝜏)𝑥 − ∫ ℘(𝜏 − 𝑠)𝔉 𝜏, 𝛾 ( , ) 𝑑𝑠 − ∑ 𝒞(𝜏 − 𝜏 )𝐼 𝛾(𝜏 ) − 

       ∑ ℘(𝜏 − 𝜏 )𝐽 𝛾(𝜏 ) ∥ ≤ ∥ 𝒞(𝜏)𝐺(𝜏)+ ∥ ℘(𝜏). 𝐺(𝜏) ∥  + ∥ ∫ ℘(𝜏 − 𝑠)𝐺(𝑠)𝑑𝑠 ∥ 

                        ∥ ∑ 𝒞(𝜏 − 𝜏 )𝑔 (𝜏 ) ∥ 

                        ∥ ∑ ℘(𝜏 − 𝜏 )𝑔 (𝜏 ) ∥ 

                         ≤ 𝑀𝜖𝜚(𝜏) + 𝑁𝜖𝜚(𝜏) + 𝑁 ∥ ∫ 𝐺(𝑠)𝑑𝑠 ∥ +𝑀𝜏𝜖𝜓 + 𝑁𝜏𝜖𝜓 

                         ≤ (𝑀 + 𝑁)𝜖𝜚(𝜏) + 𝑁 ∥ ∫ 𝜖𝜚(𝑠)𝑑𝑠 ∥ + (𝑀 + 𝑁)𝜏𝜖𝜓 

                         ≤ 𝜖[𝜚(𝜏)  + 𝜏𝜓][𝑀 + 𝑁𝑐 ]. 

Hence, for each 𝜏 ∈ 𝐼 , is obtained as 

  ∥ 𝛾(𝜏) − 𝜗(𝜏) ∥ ≤ [∥ 𝒞(𝜏)𝐺(𝜏) ∥ +∥ ℘(𝜏)𝐺(𝜏) ∥ +∥ ∫ ℘(𝜏 − 𝑠)𝐺(𝑠)𝑑𝑠 ∥ 

                         +∥ ∫ ℘(𝜏 − 𝑠)[𝔉 𝜏, 𝛾 ( , ) − 𝔉(𝜏, 𝜗 ( , ))] 𝑑𝑠 

      +∥ 𝒞(𝜏 − 𝜏 ) 𝐼 𝛾(𝜏 ) − 𝐼 𝜗(𝜏 ) ∥ + 𝒞(𝜏, 𝜏 )𝑔 (𝜏 ) ∥ 

               + ℘(𝜏 − 𝜏 ) 𝐽 𝛾(𝜏 ) − 𝐽 𝜗(𝜏 ) ∥ +∥ ℘(𝜏 − 𝜏 )𝑔 (𝜏) ∥]^𝛽 
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  ≤ [𝑀𝜖𝜚(𝜏) + 𝑁𝜖𝜚(𝜏) + 𝑁 ∥ ∫ 𝐺(𝑠)𝑑𝑠 ∥ +𝑀𝜏𝜖𝜓 + 𝑁𝜏𝜖𝜓 + 𝑁 ∫ 𝐿𝔉(𝜏) ∥ 𝛾 − 𝜗 ∥ 𝑑𝑠 +

                         𝑀 ∑ 𝐿 ∥ 𝛾(𝜏 ) − 𝜗(𝜏 ) ∥ 

                        𝑁 ∑ 𝐿 ∥ 𝛾(𝜏 ) − 𝜗(𝜏 ) ∥]^𝛽 

  ≤ [[𝑀 + 𝑁]𝜖𝜚(𝜏) + 𝑁 ∥ ∫ 𝜖𝜚(𝑠) 𝑑𝑠 ∥ +(𝑀 + 𝑁)𝜏𝜖𝜓 + 𝑁 ∫ 𝐿𝔉(𝑠) ∥ 𝛾(𝑠) − 𝜗(𝑠) ∥ 𝑑𝑠 +

                        2𝑀 ∑ 𝐿 ∥ 𝛾(𝜏 ) − 𝜗(𝜏 ) ∥] ^𝛽 

   ≤ [𝜖[𝜚(𝜏) + 𝜏𝜓] 𝑀 + 𝑁𝑐 + 2𝑀 ∑ 𝐿 ∥ 𝛾(𝜏 ) − 𝜗(𝜏 ) ∥   + 𝑁 ∫ 𝐿𝔉(𝑠) ∥ 𝛾(𝑠) −

                        𝜗(𝑠) ∥ 𝑑𝑠]^𝛽   

    ≤ 𝜖[𝜚(𝜏) + 𝜏𝜓] 𝑀 𝑁𝑐 + 2𝑀 ∑ 𝐿 ∥ 𝛾(𝜏 ) − 𝜗(𝜏 )  

                                     𝑁 ∫ 𝐿𝔉(𝑠) ∥ 𝛾(𝑠) − 𝜗(𝑠) ∥ 𝑑𝑠 , 

Where, 𝑀 = max {𝑀, 𝑁} and 𝐿 = max 𝐿 , 𝐿 . Therefore, 

    ∥ 𝛾(𝜏) − 𝜗(𝜏) ∥   ≤   𝜖[𝜚(𝜏) + 𝜏𝜓] 𝑀 + 𝑁𝑐 + 𝑁 ∫ 𝐿𝔉(𝑠) ∥ 𝛾(𝑠) − 𝜗(𝑠) ∥ 𝑑𝑠  

                                                 2𝑀 ∑ 𝐿 ∥ 𝛾(𝜏 ) − 𝜗(𝜏 ) ∥ .  

By adopting the equation  

                                          (𝑥 + 𝑦 + 𝑧) ≤ 3 𝑥 + 𝑦 + 𝑧 ,  

Where x, y, z≥ 0, and 𝛽 > 1. 

 𝛾(𝜏) − 𝜗(𝜏) ∥  ≤ 3 [𝜖[𝜚(𝜏) + 𝜏𝜓] 𝑀 + 𝑁𝑐 + 𝑁 ∫ 𝐿𝔉(𝑠) ∥ 𝛾(𝑠) − 𝜗(𝑠) ∥ 𝑑𝑠 

                                                +2𝑀 ∑ 𝐿 ∥ 𝛾 𝜏 − 𝜗(𝜏) ∥]^𝛽 

   ∥ 𝛾(𝜏) − 𝜗(𝜏) ∥ ≤ 3
  

[𝜖[𝜚(𝜏) + 𝜏𝜓] 𝑀 + 𝑁𝑐 + 𝑁 ∫ 𝐿𝔉(𝑠) ∥ 𝛾(𝑠) − 𝜗(𝑠) ∥ 𝑑𝑠 

                                                 2𝑀 ∑ 𝐿 ∥ 𝛾 𝜏 − 𝜗(𝜏 ) ∥]  

By using lemma 2.4, is obtained as  

 ∥ 𝛾(𝜏) − 𝜗(𝜏) ≤ 3 𝜖[𝜚(𝜏) + 𝜏𝜓] 𝑀 + 𝑁𝑐 1 + 3 2𝑀 𝐿 𝑒

 
∫ 𝔉( )

 

Then,  
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 ∥ 𝛾(𝜏) − 𝜗(𝜏) ∥  ≤  3 𝜖[𝜚(𝜏) + 𝜏𝜓] 𝑀 + 𝑁𝑐 1 +

3
  

2𝑀 𝐿 𝑒

 
∫ 𝔉( )

                            

             ≤ 3 𝜖 [𝜚(𝜏) + 𝜏𝜓] 𝑀 + 𝑁𝑐 1 + 3 𝑠𝑀 𝐿 𝑒
∫ 𝔉( )

 

             ≤ 𝑉 𝐾 , 𝐿 , 𝐿𝔉, 𝜚, 𝜓 𝜖 [𝜚(𝜏) + 𝜏𝜓]  

             ≤   𝑉 𝐾 , 𝐿 , 𝐿𝔉, 𝜚, 𝜓 𝜖 𝜚 (𝜏) + 𝜏 𝜓 , 

 Where  

𝑉 𝐾 , 𝐿 , 𝐿𝔉, 𝜚, 𝜓 = 3 𝑀 + 𝑁𝑐 1 + 3
 

2𝑀 𝐿  𝑒
  ∫ 𝔉( )

 

Therefore, the system is 𝛽 − 𝐻𝑈𝑅 stable concerning 𝜚 , 𝜓 . 
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