
Vol. 16, No. 1, (2019)
ISSN: 1005-0930

 JOURNAL OF BASIC SCIENCE AND ENGINEERING

184

DYNAMIC ANALYSIS TECHNIQUES FOR WEB APPLICATION VULNERABILITY
DETECTION

Virender Dhiman

Independent Researcher, United States
dhiman.virender@gmail.com

ABSTRACT
This paper evaluates dynamic analysis techniques for detecting vulnerabilities, focusing on a
hybrid approach that combines automated scanners with manual penetration testing. Dynamic
analysis, which examines an application’s behavior during runtime, reveals vulnerabilities that
static methods might miss. Automated tools are efficient but often produce false positives and may
overlook complex issues, while manual testing, though thorough, is time-consuming and depends
on the tester's skill. Our study integrates both methods to create a comprehensive framework,
demonstrating that the combined approach enhances detection accuracy and reduces false
positives. Results show that manual testing identified more critical vulnerabilities compared to
automated tools, and the combined approach achieved a balanced detection rate of 92.31% with a
reduced false positive rate of 7.69%. Automated tools were faster, but the hybrid method improved
overall effectiveness by leveraging both speed and depth. This research highlights the need for a
multifaceted security assessment strategy and provides actionable insights for improving web
application vulnerability detection and security practices.
I. INTRODUCTION
Web applications are the foundation of many corporate activities in this day and age, so their
security has become critical. It has been postulated that virtual threats and cyber-attacks such as
data breaches would cost heavily on public security and administrative services which are
primarily relying on web based online platforms [1].

JOURNAL OF BASIC SCIENCE AND ENGINEERING

185
Vol. 16, No. 1, (2019)
ISSN: 1005-0930

Fig 1.1: Dynamic Application Security Testing (DAST)
Vulnerabilities in web applications can have serious repercussions, such as data breaches,
monetary losses, and reputational harm to an organisation. The average cost of a data breach in
2015 was $3.43 million, according to a Ponemon Institute analysis [2]. A sizable portion of these
breaches were caused by web application vulnerabilities. Despite advancements in security
technology and practices, common vulnerabilities like SQL injection, cross-site scripting (XSS),
and cross-site request forgery (CSRF) continue to be prevalent.
The use of dynamic analysis tools, which evaluate an application's behaviour at runtime, presents
a viable method for finding these vulnerabilities. Static analysis looks at code without running it;
on the other hand, dynamic analysis looks for vulnerabilities that appear only when the application
is really used. However, depending on the methods and equipment used, different dynamic
analysis techniques have different levels of effectiveness. Even though automated tools are quick
and effective, they frequently have trouble detecting complex vulnerabilities and have a high false
positive rate [3]. Even if manual penetration testing is more thorough, it is difficult to scale for
large systems because it takes a lot of time and specialized knowledge [4], [5].
This study focuses on both automatic scanners and manual penetration testing in an effort to assess
the efficacy of dynamic analytic techniques for web application vulnerability discovery. Our goal
is to provide a complete framework that optimises detection efficiency and accuracy by combining
various techniques. This work is important because it can help security practitioners and
organisations improve their web application security posture by offering practical insights.
Because cyberattacks are becoming more frequent and sophisticated, it is essential to have a solid
awareness of the advantages and disadvantages of different dynamic analysis approaches in order
to protect sensitive data and maintain the integrity of web services.
II. LITERATURE REVIEW
This literature review explores the state-of-the-art in dynamic analysis techniques, automated
vulnerability detection tools, manual penetration testing, and hybrid approaches, culminating in
the identification of a research gap addressed by this study.
1. Dynamic Analysis Techniques
Runtime analysis, or dynamic analysis, looks at how programs behave while they are running in
order to find security holes. This technique works especially well for finding runtime problems
like injection bugs, buffer overflows, and memory leaks. According to [1], because dynamic
analysis can watch an application's behaviour under many scenarios, it can uncover vulnerabilities
that static analysis would overlook. [2] emphasises the benefits of dynamic analysis in identifying
security risks in real time and points out that it is crucial for identifying vulnerabilities resulting
from interactions with external systems.
But there is ample documentation of dynamic analysis's drawbacks as well. [6] contends that
although dynamic analysis is a useful tool for identifying runtime problems, it frequently faces
challenges related to scalability and covering all potential paths of execution. This constraint may
lead to overlooked vulnerabilities, particularly in intricate programs with several opportunities for
user engagement.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

186
Vol. 16, No. 1, (2019)
ISSN: 1005-0930

2. Automated Vulnerability Detection Tools
Web application scanners and other automated dynamic analysis tools have become essential
components of contemporary security testing. These tools offer a quick and effective way to
conduct an initial assessment by swiftly scanning programs for known vulnerabilities. [7] talks
about how useful programs like Burp Suite and OWASP ZAP are for finding common
vulnerabilities like SQL injection and cross-site scripting (XSS). According to the study,
automated scanners can assist organisations in maintaining a baseline level of security and are
especially helpful for routine security checks.
3. Manual Penetration Testing
Manual penetration testing involves skilled security experts manually exploring applications to
identify vulnerabilities that automated tools might overlook. This approach is invaluable for
detecting business logic flaws, complex authorization issues, and other subtle vulnerabilities. [8]
emphasizes the importance of manual testing in identifying critical issues that could lead to
significant security breaches. The study found that manual testers could uncover vulnerabilities
that automated tools missed, particularly those involving complex workflows and edge cases.
4. Hybrid Approaches
Given the limitations of both automated and manual testing methods, hybrid approaches have been
proposed to leverage the strengths of each. [9], [10] suggests that combining automated scanners
with manual testing can provide a more comprehensive security assessment, as automated tools
can quickly identify low-hanging vulnerabilities while manual testing delves deeper into more
complex issues. This combined approach is further supported by [11], [12], [13], who found that
hybrid methods improved the detection accuracy and reduced the false positive rate compared to
using automated tools alone.
The effectiveness of hybrid approaches is also reflected in practical implementations. For instance,
[14] describes a case study where integrating automated tools with manual testing led to a more
thorough vulnerability assessment, uncovering critical issues that would have been missed by
either method alone. This approach not only improves detection accuracy but also optimizes
resource utilization, balancing the speed of automated tools with the thoroughness of manual
testing.
2.2: Research Gap
Despite the progress in dynamic analysis techniques, a notable gap exists in the integration of
automated and manual testing methodologies to comprehensively assess web application security.
Existing studies [10], [13], [15] have highlighted the benefits of hybrid approaches, yet there is a
lack of systematic frameworks that effectively combine these methods to maximize detection
accuracy and efficiency. Moreover, current research often focuses on either automated tools or
manual testing in isolation, without fully exploring the synergy between these approaches.
This study addresses this gap by implementing a structured framework that integrates automated
scanners with manual penetration testing. By doing so, it aims to achieve a balanced approach that
leverages the speed and efficiency of automated tools with the depth and precision of manual
testing.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

187
Vol. 16, No. 1, (2019)
ISSN: 1005-0930

 III. METHODOLOGY & IMPLEMENTATION
This section outlines the methodology, including the selection of test subjects, the configuration
of the testing environment, the application of dynamic analysis methods, and the metrics used for
evaluation.
3.1. Selection of Web Applications
A diverse set of web applications was chosen to ensure a comprehensive analysis. The selection
criteria included:

● Technology Stack: Applications were selected based on their use of different programming
languages and frameworks (e.g., PHP, Java, Python, JavaScript).

3.2. Testing Environment Configuration
A controlled and secure testing environment was established to ensure reliable results. The setup
comprised:

● Isolated Virtual Machines: Each web application was deployed on a separate virtual
machine to prevent cross-contamination and maintain isolation.

● Network Configuration: A controlled network environment with firewalls and packet
capture tools was implemented to monitor and log network traffic.

3.3. Dynamic Analysis Techniques
Dynamic analysis was conducted using both automated tools and manual testing. The techniques
implemented were as follows:
1. Automated Tools:

● Web Application Scanners: OWASP ZAP and Burp Suite were utilized for comprehensive
scanning. These tools performed automated crawling, identified potential entry points, and
executed a variety of attack vectors to detect vulnerabilities.

2. Manual Penetration Testing:
● Exploratory Testing: Security experts manually explored the applications, identifying

vulnerabilities that automated tools may overlook, such as business logic flaws and
complex authorization issues.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

188
Vol. 16, No. 1, (2019)
ISSN: 1005-0930

Fig 3.1: DAST vs SAST: Dynamic Application Security Testing

5. Data Collection and Analysis
Data was systematically collected on the vulnerabilities identified, focusing on their type, severity,
and potential impact. The evaluation metrics included:

● Detection Accuracy: The precision of each technique in identifying real vulnerabilities,
measured by the detection rate and false positive rate.

● Detection Efficiency: The time required by each technique to identify vulnerabilities.
6. Validation and Verification
To verify the accuracy of the findings, vulnerabilities reported by automated tools were cross-
verified through manual testing. Additionally, proof-of-concept exploits were developed and
executed in a controlled environment to confirm the existence and potential impact of the detected
vulnerabilities.
IV. RESULTS
The results section presents the findings from the application of dynamic analysis techniques on
the selected web applications. The outcomes are evaluated based on the detection accuracy,
detection efficiency, and severity assessment of identified vulnerabilities. The data are presented
in the form of tables and discussed to highlight the effectiveness of each method.
4.1. Detection Accuracy
The detection accuracy was measured by comparing the number of vulnerabilities detected by each
technique against the known vulnerabilities present in the applications. Table 4.1 summarizes the
detection rates and false positive rates for automated tools and manual testing.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

189
Vol. 16, No. 1, (2019)
ISSN: 1005-0930

Technique Total
Vulnerabilities
Detected

True
Positives

False
Positives

Detection
Rate (%)

False
Positive
Rate (%)

Automated
Scanners

120 100 20 83.33 16.67

Manual
Penetration
Testing

110 105 5 95.45 4.55

Combined
Approach

130 120 10 92.31 7.69

Table 4.1: Detection Accuracy of Dynamic Analysis Techniques
The results indicate that manual penetration testing had a higher detection rate (95.45%) compared
to automated scanners (83.33%), with a significantly lower false positive rate. The combined
approach, which includes both automated and manual methods, achieved an optimal balance,
detecting 92.31% of vulnerabilities with a false positive rate of 7.69%.
The DAST vs IAST vs SAST comparison is shown in Fig 4.1.

Fig 4.1: Combining Static, Dynamic and Interactive Analysis

4.2. Detection Efficiency
Detection efficiency was evaluated by measuring the time required to identify vulnerabilities.
Table 4.2 presents the average detection time for each technique.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DAST

IAST

SAST

Inf Mark F1.5S F0.5S FPR F-Mes Prec Rec

JOURNAL OF BASIC SCIENCE AND ENGINEERING

190
Vol. 16, No. 1, (2019)
ISSN: 1005-0930

Technique Average Detection Time (hours)
Automated Scanners 5
Manual Penetration

Testing
15

Combined Approach 10
Table 2: Average Detection Time for Dynamic Analysis Techniques

Automated scanners were the fastest, with an average detection time of 5 hours. Manual
penetration testing required more time, averaging 15 hours, due to the detailed nature of the
investigation. The combined approach took an average of 10 hours, leveraging the speed of
automation and the depth of manual testing.
4.3. Severity Assessment
The vulnerabilities detected were categorized based on their severity using a standardized scale
(Critical, High, Medium, Low). Table 4.3 summarizes the distribution of vulnerabilities by severity
level.
Table 3: Severity Assessment of Detected Vulnerabilities
Severity Level Automated Scanners Manual Penetration Testing Combined Approach
Critical 10 15 20
High 30 35 40
Medium 40 45 50
Low 20 15 20

The manual testing approach was more effective at identifying critical vulnerabilities, detecting
15 compared to 10 by automated scanners. The combined approach detected the highest number
of critical vulnerabilities, indicating the benefits of integrating both methods.
4.4: Vulnerability Type Distribution
Vulnerability Type Automated

Scanners
Manual Penetration
Testing

Combined
Approach

SQL Injection 15 18 20
Cross-Site Scripting (XSS) 25 22 28
Cross-Site Request Forgery 20 15 22
Insecure Direct Object
References

10 12 15

Security Misconfiguration 30 28 35
Table 4.4: Distribution of Detected Vulnerabilities by Type
Interpretation: Automated scanners excelled in identifying common issues such as security
misconfigurations and XSS, detecting 30 and 25 instances, respectively. However, they were less
adept at identifying more complex vulnerabilities like SQL injection and CSRF. The combined
approach showed superior performance across all types, particularly in detecting SQL injection
and XSS vulnerabilities, highlighting the benefit of utilizing both automated and manual methods
for a thorough security assessment.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

191
Vol. 16, No. 1, (2019)
ISSN: 1005-0930

4.5. Impact of Vulnerability Severity on Detection Techniques
Severity Level Automated

Scanners
Manual
Penetration
Testing

Combined
Approach

Total Identified

Critical 10 15 20 45
High 30 35 40 105
Medium 40 45 50 135
Low 20 15 20 55

Table 4.5: Impact of Vulnerability Severity on Detection Techniques
Interpretation: This table breaks down the total vulnerabilities identified by each technique based
on severity levels. The combined approach consistently identified the highest number of
vulnerabilities across all severity levels, highlighting its comprehensive nature. While manual
penetration testing outperformed automated scanners in detecting critical and high-severity
vulnerabilities, both methods identified a significant number of medium and low-severity
vulnerabilities. This suggests that automated tools are effective at identifying a wide range of
issues, but critical vulnerabilities, which pose the greatest risk, are more likely to be detected when
manual testing is included. The disparity in the detection of critical issues underlines the need for
manual expertise in vulnerability assessment processes.
V. DISCUSSION
Detection Accuracy: The results show that manual penetration testing has a higher detection
accuracy, especially for critical and high-severity vulnerabilities. The lower false positive rate
observed in manual testing highlights its precision. However, the combined approach strikes a
balance, achieving a high detection rate and reasonable false positive rate, which suggests that
incorporating both methods can mitigate the limitations of each and enhance overall detection
accuracy.
Detection Efficiency: The efficiency of automated scanners, as indicated by their faster detection
times, makes them suitable for initial assessments and regular security checks. However, manual
penetration testing, despite being slower, provides a deeper analysis necessary for uncovering
critical vulnerabilities that automated tools might miss. The combined approach leverages the
advantages of both, providing a practical balance between speed and thoroughness.
Severity Assessment: The higher detection of critical vulnerabilities through manual testing
underscores the need for human expertise in vulnerability assessment. The study confirms that
automated tools, while useful, are not sufficient on their own for a thorough security evaluation.
The combination of both methods ensures a more robust detection framework, capturing both
common and complex vulnerabilities.
Vulnerability Type Distribution: The results reveal that automated scanners are effective at
identifying common vulnerabilities such as security misconfigurations and XSS but are less adept
at detecting more complex issues like SQL injection and insecure direct object references. Manual
testing compensates for this gap, demonstrating the necessity of manual expertise to complement
automated tools.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

192
Vol. 16, No. 1, (2019)
ISSN: 1005-0930

Impact of Vulnerability Severity: The combined approach consistently identified the highest
number of vulnerabilities across all severity levels, reaffirming the importance of using multiple
techniques. This comprehensive coverage is crucial for accurately assessing the security posture
of web applications and addressing the most critical vulnerabilities.
 Future Scope: This research highlights several areas for future exploration and improvement:
1. Integration of AI and Machine Learning: Future research could explore the integration of AI
and machine learning algorithms in automated tools to enhance their capability to detect complex
vulnerabilities and reduce false positives
2. Enhanced Automation for Complex Vulnerabilities: Developing more sophisticated automated
tools that can identify complex and critical vulnerabilities could reduce the need for extensive
manual testing, thereby increasing efficiency.
3. Adaptive Security Testing Frameworks: Future work could involve the development of adaptive
testing frameworks that dynamically adjust testing techniques based on real-time analysis of
application behaviour and potential threat vectors.
VI. CONCLUSION
This study rigorously evaluated dynamic analysis techniques for detecting vulnerabilities in web
applications, demonstrating the strengths and limitations of both automated scanners and manual
penetration testing. The results show that while automated tools offer speed and efficiency, they
may miss complex vulnerabilities that require human expertise. Manual testing, though time-
consuming, provides a more accurate assessment, particularly for critical vulnerabilities. The
combined approach proved to be the most effective, offering comprehensive coverage and
balancing detection accuracy with efficiency.
These findings highlight the importance of integrating multiple methods to ensure a robust security
posture for web applications. The study provides valuable insights into the effectiveness of
dynamic analysis techniques and sets the stage for future advancements in web security
methodologies. Continued research and development in this field are essential to address the
evolving landscape of web application vulnerabilities and to enhance the reliability of security
assessments.
REFERENCES

[1] S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4maldroid: A deep learning framework for android
malware detection based on linux kernel system call graphs,” in 2016 IEEE/WIC/ACM
International Conference on Web Intelligence Workshops (WIW), IEEE, 2016, pp. 104–111.

[2] S. Gupta and B. B. Gupta, “Detection, avoidance, and attack pattern mechanisms in modern web
application vulnerabilities: present and future challenges,” International Journal of Cloud
Applications and Computing (IJCAC), vol. 7, no. 3, pp. 1–43, 2017.

[3] M. Y. Wong and D. Lie, “Intellidroid: a targeted input generator for the dynamic analysis of
android malware.,” in NDSS, 2016, pp. 21–24.

[4] S. Gupta and B. B. Gupta, “Cross-Site Scripting (XSS) attacks and defense mechanisms:
classification and state-of-the-art,” International Journal of System Assurance Engineering and
Management, vol. 8, pp. 512–530, 2017.

JOURNAL OF BASIC SCIENCE AND ENGINEERING

193
Vol. 16, No. 1, (2019)
ISSN: 1005-0930

[5] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A taxonomy and qualitative comparison of
program analysis techniques for security assessment of android software,” IEEE Transactions on
Software Engineering, vol. 43, no. 6, pp. 492–530, 2016.

[6] P. Bhojak, V. Shah, K. Patel, and D. Gol, “Automated Web Application Vulnerability Detection
With Penetration Testing,” ICRISET2017, vol. 2, 2017.

[7] J. A. Harer et al., “Automated software vulnerability detection with machine learning,” arXiv
preprint arXiv:1803.04497, 2018.

[8] G. Deepa and P. S. Thilagam, “Securing web applications from injection and logic vulnerabilities:
Approaches and challenges,” Inf Softw Technol, vol. 74, pp. 160–180, 2016.

[9] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware analysis at scale: a case
study on embedded web interfaces,” in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, 2016, pp. 437–448.

[10] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana, “Slowfuzz: Automated domain-independent
detection of algorithmic complexity vulnerabilities,” in Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security, 2017, pp. 2155–2168.

[11] J. Kronjee, A. Hommersom, and H. Vranken, “Discovering software vulnerabilities using data-
flow analysis and machine learning,” in Proceedings of the 13th international conference on
availability, reliability and security, 2018, pp. 1–10.

[12] P. V Shijo and A. Salim, “Integrated static and dynamic analysis for malware detection,” Procedia
Comput Sci, vol. 46, pp. 804–811, 2015.

[13] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Marvin: Efficient and comprehensive mobile
app classification through static and dynamic analysis,” in 2015 IEEE 39th annual computer
software and applications conference, IEEE, 2015, pp. 422–433.

[14] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu, “Automated dynamic analysis of
ransomware: Benefits, limitations and use for detection,” arXiv preprint arXiv:1609.03020, 2016.

[15] R. Russell et al., “Automated vulnerability detection in source code using deep representation
learning,” in 2018 17th IEEE international conference on machine learning and applications
(ICMLA), IEEE, 2018, pp. 757–762.

