A REVIEW PAPER: FAKE NEWS DETECTION

Kavita Rathi¹ Anamika Saini²

¹DeenBandhu ChotuRam University,

Sonipat, India

kavitarathi.cse@dcrustm.org,

²DeenBandhu ChotuRam University,

Sonipat, India

sainianamika.anu@gmail.com

Abstract. In today's time when it is very easy to send any data to anyone in just a few minutes, to identify whether the information is accurate or not we have fake news detection algorithms. Fake news detection helps to find out fraud and detect the accurate information shared by anyone. In this review paper, we re-viewed the different techniques and methods used for fake news detection. This review paper helps to find out the accuracy which is already 99% achieved in some algorithms and the different popular data sets which are being used for the fake news detection systems.

Keywords: Fake News Detection, Information, Algorithm

1 Introduction

People are connected to a smart platform where they can share their information without verifying whether it is true or not [1]. It is very easy to spread content on social media like Facebook, Twitter, and etc. [2]. Content sharing on social media takes very less time and that's why it's very easy to spread fake news over there. Ru-mors, negative thoughts among people or the specific category of the people and many more things can be used which are not good for society [3]. News and infor-mation are always available at our fingertips and that is sometimes also dangerous for us. According to a survey in 2012, 49% of US adults saw the news on social media but in 2019 it's 62% which means there is a rapid growth in this type of users over social media [4]. The statistics have proven that 6 out of 10 people believe the news is updated on social media. In the last couple of years' fake news is getting more and more attention as we can see in the example of the US election in 2016. In Brazil's presidential election what's app is a popular political campaign platform. Anyone can spread fake news according to their views and can spread easily to any of the platform easily [5]. Sometimes the worst conditions are also raised due to the unauthentic con-tent on the social media. Social media users are biased toward their friends, relatives, and a group of persons thinking, in the influence of their thoughts the user's spread

Vol. 19, No. 1, (2022) ISSN: 1005-0930

unauthentic information without even knowing its authenticity. There can be different forms by which we can define the anti-social behavior of the users but when we relate in some closer manner we find out two forms for that [6]. The 1st form is for that that spreads inappropriate information and 2nd form is for that who manipulates the point of view of the users with their discussions.

Fake news is something that is spread exactly to change someone's point of view. And as we discussed about fake news, we can easily say that fake news detection is very necessary for today's time, and for that, we need a system by which we can check whether the news is fake or not [7]. It is important to issue to find out fake news forms the different social media platforms. As we know about INFODEMIC, the actions took time of COVID-19 for spreading inappropriate or unauthentic infor-mation on social media by world health organization [8]. Depending upon the different functionalities we have different methods to detect fake news.

2 Basic Terminology Used in Fake News Detection:

Whenever the fake news detection algorithm is applied to any format there are some basic terms which used as same in every place. We have a basic terminology that should be followed in every fake news detection system. Let's discuss the procedure by the following diagram:

Fig. 1 Fake News Detection Basic Procedure

The data is firstly collected from the different events or we can say different sources. After data is collected next step is preprocessing means we have to clean the noisy or unstructured data. Whenever preprocessing is done we analyze the data according to the requirements of the algorithms we are using.

After the analysis part is performed we classify the data into different categories to perform our fake news detection algorithm on that.

According to the different fake news detection algorithms different results and con-clusions were derived and better accuracy and performance were given.

3 Comparative analysis of different papers:

In this paper, we review the different papers on fake news detection to analyze the different algorithms and procedures used in 2015 - 2022.

The different research papers use different methods to make the system more secure in terms of different parameters. The parameters like accuracy, integrity, flexibility, F1 score, and précised data are used for checking whether the proposed method is positive. These parameters are different in different proposed methods and by using parameter's value the system's performance is also analyzed.

The different authors tried their best to achieve the approx. 100% accuracy in their methods which is also achieved and can be seen in the results. In the following table, we make a comparative analysis of their algorithms, techniques, and advantages as given:

SR. No.	Authors	Years	Technique Purposed	Advantages
1.	Yimi Chen,Niall n J.	2015	Combi networ nes the k	Aim is make flexi-
	Conroy, Victoria L. Rubin		analy and sis linguistic cue	ble fake news
	[9]		approa	detecting

Table 1. Comparative Analysis of paper's 2015 to 2022

			ch	system
	Sheri Saad.		Machi learni "N	Accuracy give
2.	f Hadeer	2017	ne ng & "	is n
	Ahmed. Issa Traore		analysis	up to
	[10]		Gramapproach	92%.
-				
			used	
	Cody Buntain,		Automatic fake news	Improves
3.	Jennifer	2017	de-	the
			tection on twitter by	accuracy
	Golbeck [11]		using	and
			looming	anadihilit
			predicate	V
			predicate	у
	Mykhailo Granik,		Implemented on	
4.	Vo-	2017	Face-	Accuracy
-	lodvmvr Mesvura		book's post by using	
	[12]		naïve	achieved- 75%
			Derree	
			Bayes	
			classifiers	
	Gaurav Bhatt,		Combination of two	
5.	Aman	2018	tech-	Average results
	Sharma, Ankush		nique is applied for	shown by
	Mittal,		finding	using
	Shivom Shormo		faka nawa hu	
	Ankush		Appling "n"	this technique
	7 mRush		Appling II	this teeninque.
	Nagpal,		gram model and	
	Balasubramani-		heuristics	
			from external	
	an Raman [13]		sources	
			Naive Baves	Accuracy is
6.	Akshay Jain, Amey	2018	classification	im-
	TZ 1 F1 47			
	Kasbe [14]		method is used to	proved if

		find out	words
		whether the news is	with more
		real	length
		/fake.	used.
		Bag-of-words model	Improves
7.	Haohui Liu [15] 2019	and e	accura-
		pre-trained GloVe	
		word	cy, précised
		embedding's with	
		BiLSTM	
		is used on location	
		de-	
		pendent data sets.	
	Amit Kumar	Support Vector	The results
8.	Gupta, 2019	Machine is	show
	Anjali Jain,	used for detection of	us 93.6%
	Avinash	fake	accuracy
	Shakya and Harsh		
	Khat-	news	for detection of
	ter [3]		fake news.
	Viera Maslej	Using textual data	
9	Kresnakov ' 2019	with	Average results
		deep learning to find	shown by
	a,Martin Sar-	out	using
	novsky,Peter Butka		
	[16]	the fake news.	this method
	Abdullah-All-	For determining	Improved
10.	Tanvir, 2019	forged	accura-
	Mohammad	news messages from	cy than the

	Rezwanul	twit-	previ-
	Huq, Ehesas Mia Mahir	ter post	ous methods.
	and Saima Akhter [17]		
11.	Tarang Barua , Ashish 2019	LSTM and GRU are used in	Accuracy- 82.61%
	Kumar Layek Ranojoy	this method	F1 Score- 0.83
	Barua , Rajdeep Maity		
	and Dipankar Minj [18]		
12.	Rohit Kumar Kaliyar, 2019	Gradient boosting with	Accuracy -86%
	Anurag Goswami, Pratik	different parameters are	
	Narang [19]	used to achieve the high	
		level of accuracy in differ-	
		ent data sets.	
13.	Ponnurangam Kumara- 2019	VCG 19 pre trained data	77.77 & 89.23 %
	guru, Shin'ichi Satoh,	set is used with BERT algo-	Accuracy in differ-
	Shivangi Singhal, Rajiv	rithm in this paper.	ent data sets are
	Ratn Shah and Tanmoy		achieved.
	Chakraborty [20]		

14.	FabricioBenevenuto,2019	New set of features and	95% accuracy and
	Julio C. S. Reis, Andre	data sets are used to pro-	F1 score has been
	Correia, Fabricio Murai	duce the better results.	produced by this
	and Adriano Veloso [21]		technique.
15.	Paweł Ksieniewicz,2020	Firstly used fact checker	Improved results
	Michał Wozniak, Paweł	and secondly used AI algo-	and scores.
	Zyblewski, Michał Cho-	rithm to detect the fake	
	ras, Rafał Kozik and	news.	
	Agata Giełczyk [22]		
16.	Okuhle Ngada, Bertram 2020	6 machine learning algo-	Precision- 99.3%
	Haskins [23]	rithms are used in one	Accuracy- 99.4%
		technique.	Recall-99.4%
			FMeasure- 99.4%
			ROC-99.3%
17.	Jasmine Shaikh, Rupali 2020	Support Vector Machine	Accuracy is
	Patil [24]	(SVM), Naïve Bayes, and	achieved up to
		Passive Aggressive	95.5%

Classifi-

		er are used.	
		A traditional methods	
10	Awf Abdulrahman 2020	4 traditional methods	Acouroovis
10.	Awi Abdullalillali, 2020	were	Accuracy is
	Muhammet	applied to extract	achieved from
	Baykara	features	81
		1 1 1 1 1 1 1	
		and employing 10	
	[25]	different	to 100%
		machine learning	
	Rahul R Mandical,	Hybrid technique	Accuracy
19.	Ma- 2020	used	achieved
	matha N,	such as Naive Bayes,	
	Shivakumar N,	Pas-	up to 99.9%
	Monica R. Krishna	sive Aggressive	
	A N.	Classifier	
		and Deep Neural	
	Member IEEE [5]	Networks	
	Daiash Kumar	ML aloggifier is used	00.9 A course ou
20	Kajesii Kuillar,	will classifier is used	90 % Accuracy
20.	Mayank 2020	in this	18
	Kumar Jain,	paper by using two	
	Dinesh	differ-	achieved
	Gopalani and	ent data sets TF &	
	Yogesh	TFIDF to	
	Kumar Meena [26]	achieve the accuracy.	
	Vanya Tiwari,	Two different	
21.	Ruth G. 2020	classification	Accuracy -71%
		algorithms	
		argoriumis are	
	Lennon, I nomas	combined	
	1 I	I	I I

	Dowling [27]	to achieve the accuracy in TF IDF algorithm.	
22.	Sanket Mhatre, Akhil 2021	NLP for preprocessing &	Improve classifica-
	Masurkar [28]	TFIDF to train models	tion and reliable
			results.
23.	Saumya Chaturvedi, 2021	For correcting error in the	Better accuracy
	Ansh Saxena, Akash	given algorithm and up-	with 96% accurate
	Gupta and Farhan Alam	date it whenever needed	results.
	[7]		
24.	Dilip Kumar Sharma, 2021	LSTM and BI-LSTM are	Accuracy is im-
	Sonal Garg, Priya	used for fake news identi-	proved up to
	Shrivastava [29]	fication on KAGGLE set	91.51%
25.	S Devi, V Karthik, S 2021	LR, Gaussian Naïve Bayes	The accuracy is
	Bagavathi Bavatharani,	and tampered image classi-	improved up to
	K Indhumadhi [30]	fication using CNN for fake	95.33%
		news detection.	
26.	Ankit kumar Patel, Kevin 2021	This method using LR,	Gives highest

	Meehan [31]	MultinominalNB, and SVM	accuracy in Reddit
		with CV and Term Fre-	data set
		quency	
27.	Kian Ming Lim, Kian 2021	An CNN model that is	Accuracy- 99.39%
	Long Tan and Chin Poo	referred to as FN-Net is	
	Lee [32]	devised for fake news	
		detection	
28.	Amit Neil Ramkissoon, 2021	This paper contains unique	Improved accura-
	Wayne Goodridge [33]	EML model to accomplish	cy, recall, F1score
		Credibility Based Fake	
		News Detection.	
29.	Swatej Patil, Suyog 2021	A new technique in ma-	Precision- 1.0
	Vairagade, Dipti Theng	chine learning to provide	Accuracy- 97.2%
	[6]	TFIDF vectorizer.	
30.	Danish Shakeel, Dr Nitin 2021	New technique in which	Improved F1 score
	Jain [34]	style based approaches are	and accuracy
		used to detect the fake	level.
		news by Fast TransE	

		model	
		and algorithms.	
31.	Pratik Narang, Rohit 2021	BERT based deep learning	In this accuracy
	Kumar Kaliyar and	approach is used in this	level is achieved
	Anurag Goswami [35]	paper by combining the	up to 98.90%
		different parallel ap-	
		proaches.	
	Dr.S.Gowri, Jenila	TFIDF is proposed in	93.29%
32.	J, 2021	this	accuracy is
	Bathula Sowmya Reddy,	paper with SGD algorithm	achieved by using
	M.Antony Sheela [36]	for better efficiency.	this algorithm.
33.	SherryGirgis,Eslam2022	CNN with GRU model of	Improves perfor-
	Amer [37]	RNN and RFT is used	mance and shows
			the best results in
			LIAR dataset.
34.	Satish Anamalamudi 2022	Tool to detect the fake	Used to improve
	and K Raghavendra	news using naive bayes	the accuracy
	Asish, Adarsh Gupta,	technique	
	Arpit Kumar, Alex		

	Ma-			
	son and Murali Krishna			
	Enduri [38]			
35.	Tashko Pavlov and	2022	Uses BERT and RoBERTa	Better accuracy,
	Georgina Mirceva [8]		models for detecting fake	F1 SCORE
			news during pandemic.	achieved
36.	Eappen Zachariah	2022	Automatic fake news de-	Accuracy-96.7
	Mathews, Dr Preethi N		tection system that is used	F1 Score-96.9
	[39]		by ML	Recall-97.5
				Precision-96.2
				achieved.
37.	Aniket Sharma, Ishita	2022	Used Examination zones	Comparison of
	Singh, Dr. Vipin Rai [4]		and future bearings for the	different tech-
			exploration on fake news	niques to find out
			identification on social	the impact of
			media.	social media.
38.	N. Leela Siva Rama	2022	DT algorithm and SVM	Accuracy- 91.74%

	Krishna, M. Adimoolam	algorithm is used in pur-	Precision-
	[30]	posed research	92.2510%
39.	D. Jaswanth Babu, G. 2022	Machine learning classifi-	Accuracy- 99.49%
	Sushmitha, D. Lasya, D.	cation methods are used	achieved.
	Gopi Krishna, V. Rajesh	collectively SVM, NB, LR,	
	[40]	DT, and RF are used to detect fake news.	
		Random Forest is	In total data
40.	Muhammad Fayaz, 2022	applied	sets
	Sana Ullah Khan, Atif	on ISOT fake news data set	97.25% accuracy is
	Khan and Muhammad	with four best selection	achieved in four
	Bilal [41]	techniques to achieve the	different data
		best results.	sets.

	Asutosh Mohapatra	L	А	hybrid	deep	
41.	&	2022	learnii	ıg		Accuracy is
	Nithin Thota & P. Prakasam [42]		model is usec in this	with Bil 1 paper.	LSTM	achieved up to 98.65%
	Mr. Akash	L	Block	chain	based	95.20%
42.	Dnyandeo	2022	system	1		accuracy is

Waghmare, Dr. Girish	used LIAR data se as pro-	achieved.
Kumar Patnaikm [2]	posed algorithm i this	n
	paper.	

4 Conclusion:

In this paper, we analyze the techniques used for fake news detection and found that many algorithms provide better accurate results means approx. 99% accuracy is al-ready achieved in fake news detection algorithms which help us to identify fake news from different sources. Different sources are used to take different types of data and different data sets are used accordingly to detect whether the news is genuine or not by using different algorithms. The algorithm/method/technique used in different pa-pers is reviewed in this paper to show their advantages, accuracy, performances, etc.

The performance of a fake news detection system can vary widely depending on fac-tors like the quality and diversity of training data, the sophistication of the algorithms used (e.g., machine learning, deep learning, natural language processing), and the specific features or indicators considered for classification (e.g., linguistic patterns, source credibility, fact-checking results). It's important to strike a balance between precision and recall to avoid both false positives and false negatives, as the conse-quences of misclassifying news can be significant. It's important to note that fake news detection is a challenging and evolving field, and no system is perfect. Researchers and developers continually work to improve these systems to reduce false positives and negatives and keep up with the evolving tactics used by purveyors of misinformation.

References

1. Mhatre S, Masurkar A.: A Hybrid Method for Fake News Detection using Cosine Similari-

ty Scores. In: International Conference on Communication Information and Computing Technology (ICCICT), IEEE, pp. 1-6. (2021)

2. Dnyandeo Waghmare A, Kumar Patnaik G.: Social Media Fake News Detection using

mNB in Blockchain. In: International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). IEEE, pp. 1198-1204. (2022)

3. Jain A, Shakya A, Khatter H, Gupta AK.: A smart System for Fake News Detection Using

Machine Learning. In: International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT). IEEE, pp. 1-4. (2019)

4. Sharma A, Singh I, Rai V.: Fake News Detection on Social Media. In: 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). IEEE, pp. 803-807. (2022)

5. Mandical RR, Mamatha N, Shivakumar N, Monica R, Krishna AN.: Identification of Fake

News Using Machine Learning. In: International Conference on Electronics, Computing and Communication Technologies (CONECCT). IEEE, pp. 1-6. (2020)

6. Patil S, Vairagade S, Theng D.: Machine Learning Techniques for the Classification of

Fake News. In: International Conference on Computational Intelligence and Coputing Applications (ICCICA). IEEE, pp. 1-5. (2021)

7. Chaturvedi S, Saxena A, Gupta A, Alam F.:Detecting Fake News using Machine Learning Algorithms. In: 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N). IEEE, pp. 212-216. (2021)

8. Pavlov T, Mirceva G.: COVID-19 Fake News Detection by Using BERT and RoBERTa

models. In: 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO). IEEE, pp. 312-316. (2022)

9. Conroy NK, Rubin VL, Chen Y.: Automatic deception detection: Methods for finding fake news. Proc Assoc Info Sci Tech. pp. 1-4. (2015)

10. Ahmed H, Traore I, Saad S.: Detection of Online Fake News Using N-Gram Analysis and

Machine Learning Techniques. In: Traore I, Woungang I, Awad A, eds. Intelligent, Se-cure, and Dependable Systems in Distributed and Cloud Environments. Vol 10618. Lec-ture Notes in Computer Science. Springer International Publishing; pp. 127-138. (2017)

11. Buntain C, Golbeck J.: Automatically Identifying Fake News in Popular Twitter Threads.

n: IEEE International Conference on Smart Cloud (SmartCloud). IEEE, pp. 208-215. (2017)

12. Mykhailo Granik, Volodymyr Mesyura: Fake News Detection Using Naive Bayes Classi-

fier. In: First Ukraine Conference on Electrical and Computer Engineering (UKRCON). IEEE, (2017)

13. Bhatt G, Sharma A, Sharma S, Nagpal A, Raman B, Mittal A.: Combining Neural, Statistical and External Features for Fake News Stance Identification. In: Companion of the The Web Conference 2018 on The Web Conference 2018 - WWW '18. ACM Press, pp. 1353-1357. (2018) 14. Jain A, Kasbe A. : Fake News Detection. Published online (2018) 15. Liu H.: A Location Independent Machine Learning Approach for Early Fake News Detection. In: International Conference on Big Data (Big Data). IEEE, pp. 4740-4746. (2019LeCun Y, Bengio Y, Hinton G.: Deep learning. Nature, pp. 436-444. (2015) 16. Abdullah-All-Tanvir, Mahir EM, Akhter S, Huq MR.: Detecting Fake News using Machine Learning and Deep Learning Algorithms. In: 7th International Conference on Smart Computing & Communications (ICSCC). IEEE, pp. 1-5. (2019) Barua R, Maity R, Minj D, Barua T, Layek AK.: F-NAD: An Application for Fake 17. News Article Detection using Machine Learning Techniques. In: IEEE Bombay Section Signa-ture Conference (IBSSC). IEEE, pp. 1-6. (2019) 18. Kaliyar RK, Goswami A, Narang P.: Multiclass Fake News Detection using Ensemble Machine Learning. In: 9th International Conference on Advanced Computing (IACC). IEEE, pp. 103-107. (2019) 19. Singhal S, Shah RR, Chakraborty T, Kumaraguru P, Satoh S.: SpotFake: A Multimodal Framework for Fake News Detection. In: Fifth International Conference on Multimedia Big Data (BigMM). IEEE, pp. 39-47. (2019) 20. Reis JCS, Correia A, Murai F, Veloso A, Benevenuto F.: Supervised Learning for Fake News Detection. IEEE Intell Syst., pp. 76-81. (2019) 21. Ksieniewicz P, Zyblewski P, Choras M, Kozik R, Gielczyk A, Wozniak M.: Fake News Detection from Data Streams. In: International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1-8. (2020) 23. Ngada O, Haskins B.: Fake News Detection Using Content-Based Features and Machine 85

Learning. In: Asia-Pacific Conference on Computer Science and Data Engineering (CSDE). IEEE, pp. 1-6. (2020)

24. Shaikh J, Patil R.: Fake News Detection using Machine Learning. In: International Sympo-sium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC). IEEE, pp. 1-5. (2020)

25. Abdulrahman A, Baykara M.: Fake News Detection Using Machine Learning and Deep

Learning Algorithms. In: International Conference on Advanced Science and Engineering (ICOASE). IEEE, pp. 18-23. (2020)

26. Kumar Jain M, Gopalani D, Kumar Meena Y, Kumar R.: Machine Learning based Fake

News Detection using linguistic features and word vector features. In: 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). IEEE, pp. 1-6. (2020)

27. Tiwari V, Lennon RG, Dowling T.: Not Everything You Read Is True! Fake News Detec-tion using Machine learning Algorithms. In: 31st Irish Signals and Systems Conference (ISSC). IEEE, pp. 1-4. (2020)

28. Mhatre S, Masurkar A.: A Hybrid Method for Fake News Detection using Cosine Similari-

ty Scores. In: International Conference on Communication Information and Computing Technology (ICCICT). IEEE, pp. 1-6. (2021)

29. Sharma DK, Garg S, Shrivastava P.: Evaluation of Tools and Extension for Fake News

Detection. In: International Conference on Innovative Practices in Technology and Man-agement (ICIPTM). IEEE, pp. 227-232. (2021)

30. Krishna NLSR, Adimoolam M.: Fake News Detection system using Decision Tree algo-

rithm and compare textual property with Support Vector Machine algorithm. In: Interna-tional Conference on Business Analytics for Technology and Security (ICBATS). IEEE, pp. 1-6. (2022)

31. Patel A, Meehan K.: Fake News Detection on Reddit Utilising CountVectorizer and Term Frequency-Inverse Document Frequency with Logistic Regression, MultinominalNB and Support Vector Machine. In: 32nd Irish Signals and Systems Conference (ISSC). IEEE, pp. 1-6. (2021)

32. Tan KL, Poo Lee C, Lim KM.: FN-Net: A Deep Convolutional Neural Network for Fake

News Detection. In: 9th International Conference on Information and Communication Technology (ICoICT). IEEE, pp. 331-336. (2021)

33. Amit Neil Ramkissoon, Wayne Goodridge: Legitimacy: An Ensemble Learning Model for

Credibility Based Fake News Detection. In: International Conference on Data Mining Workshops (ICDMW). IEEE, (2021)

34. Danish Shakeel, Nitin Jain.: Fake news detection and fact verification using knowledge graphs and machine learning. Published online (2021)

35. Kaliyar RK, Goswami A, Narang P.: FakeBERT: Fake news detection in social media with a BERT-based deep learning approach. Multimed Tools Appl, pp. 11765-11788. (2021)

36. Gowri S, Jenila J, Reddy BS, Sheela MA.: Scrutinizing of Fake News using Machine

Learning Techniques. In: International Conference on Artificial Intelligence and Smart Systems (ICAIS). IEEE, pp. 223-227. (2021)

37. irgis S, Amer E.: A Proposed Ensemble Voting Model for Fake News Detection. In: 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). IEEE, pp. 316-322. (2022)

38. Asish KR, Gupta A, Kumar A, Mason A, Enduri MK, Anamalamudi S.: A Tool for Fake

News Detection using Machine Learning Techniques. In: 2nd International Conference on Intelligent Technologies (CONIT). IEEE, pp. 1-6. (2022)

10Mathews EZ, Preethi N.: Fake News Detection: An Effective Content-Based Approach

Using Machine Learning Techniques. In: International Conference on Computer Commu-nication and Informatics (ICCCI). IEEE, pp. 1-7. (2022)

39. Babu DJ, Sushmitha G, Lasya D, Krishna DG, Rajesh V.: Identifying Fake News usingMachine Learning. In: International Conference on Electronics and Renewable Systems (ICEARS). IEEE, pp. 1-6. (2022)

40. Fayaz M, Khan A, Bilal M, Khan SU.: Machine learning for fake news classification with optimal feature selection. Soft Comput., pp. 7763-7771. (2022)

41. Mohapatra A, Thota N, Prakasam P.: Fake news detection and classification using hybrid BiLSTM and self-attention model. *Multimed Tools Appl.*, pp. 18503-18519. (2022)